Displaying 1-6 of 6 results found.
page
1
Decimal expansion of the generalized Euler constant gamma(5,12) (negated).
+10
15
0, 0, 3, 3, 7, 2, 9, 4, 9, 3, 2, 2, 4, 0, 3, 2, 9, 7, 0, 2, 5, 0, 3, 2, 4, 9, 4, 8, 1, 8, 5, 9, 2, 1, 9, 4, 6, 1, 6, 0, 3, 4, 0, 3, 4, 6, 9, 9, 4, 9, 8, 3, 9, 5, 3, 8, 7, 3, 1, 6, 7, 0, 0, 8, 6, 3, 1, 2, 7, 1, 0, 3, 1, 6, 7, 6, 1, 5, 8, 5, 1, 3, 3, 3, 6, 5, 9, 1, 2, 3, 6, 3, 9, 7, 0, 0, 3, 1, 1, 9, 9, 9, 7, 7, 8, 7, 9
FORMULA
Equals EulerGamma/12 + 1/24*(Pi*(2-sqrt(3)) + 2*(sqrt(3)+1)*log(2) + log(3) - 4*sqrt(3) * log(sqrt(3)+1)).
Equals -(psi(5/12) + log(12))/12. - Amiram Eldar, Jan 07 2024
EXAMPLE
-0.0033729493224032970250324948185921946160340346994983953873167...
MATHEMATICA
Join[{0, 0}, RealDigits[-Log[12]/12 - PolyGamma[5/12]/12, 10, 105] // First]
PROG
(PARI) default(realprecision, 100); Euler/12 + 1/24*(Pi*(2-sqrt(3)) + 2*(sqrt(3)+1)*log(2) + log(3) - 4*sqrt(3)*log(sqrt(3)+1)) \\ G. C. Greubel, Aug 27 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/12 + 1/24*(Pi(R)*(2-Sqrt(3)) + 2*(Sqrt(3)+1)*Log(2) + Log(3) - 4*Sqrt(3)*Log(Sqrt(3)+1)); // G. C. Greubel, Aug 27 2018
Decimal expansion of log_12 (28/13).
+10
9
3, 0, 8, 7, 6, 6, 1, 8, 7, 5, 6, 6, 4, 9, 2, 8, 9, 9, 7, 8, 8, 4, 0, 1, 0, 5, 4, 6, 6, 2, 8, 8, 7, 8, 6, 6, 1, 4, 8, 1, 6, 3, 1, 7, 7, 1, 5, 5, 7, 1, 4, 8, 4, 3, 9, 2, 5, 7, 9, 8, 0, 2, 3, 5, 5, 0, 8, 4, 0, 6, 6, 7, 0, 6, 4, 4, 3, 1, 6, 7, 6, 1, 5, 4, 2, 7, 3
COMMENTS
Decimal expansion of maximal value of function alpha(n) = alpha-deviation from primality of number n = log_n(sigma(n)) - log_n(n+1) = log_n[sigma(n) / (n+1)] for n = 12, when alpha(12) = log_12(sigma(12)) - log_12(12+1) = log_12(28) - log_12(13) = log_12 (28/13) = 0,308766187…; alpha(p) = 0 for p = prime.
EXAMPLE
0,3087661875664928997884010546628878661481631771557148…
MATHEMATICA
RealDigits[Log[12, 28/13], 10, 120][[1]] (* Harvey P. Dale, Apr 17 2022 *)
Decimal expansion of the generalized Euler constant gamma(1,12).
+10
9
8, 3, 0, 2, 4, 9, 8, 8, 9, 8, 8, 6, 6, 2, 4, 3, 3, 9, 3, 8, 9, 0, 3, 4, 1, 9, 7, 0, 3, 2, 1, 4, 9, 6, 5, 0, 5, 5, 5, 7, 9, 6, 3, 9, 2, 7, 9, 7, 2, 7, 4, 9, 6, 2, 0, 1, 5, 4, 3, 9, 8, 6, 8, 1, 1, 3, 9, 3, 1, 2, 5, 3, 4, 4, 1, 4, 2, 7, 9, 9, 6, 1, 0, 1, 6, 0, 1, 3, 0, 5, 8, 1, 2, 5, 5, 8, 4, 0, 3, 5, 7, 1, 9
FORMULA
Equals EulerGamma/12 + 1/24*(Pi*(2+sqrt(3)) - 2*(sqrt(3)-1)*log(2) + log(3) + 4*sqrt(3) * log(sqrt(3)+1)).
Equals Sum_{n>=0} (1/(12n+1) - 1/12*log((12n+13)/(12n+1))).
Equals -(psi(1/12) + log(12))/12. - Amiram Eldar, Jan 07 2024
EXAMPLE
0.83024988988662433938903419703214965055579639279727496201543...
MATHEMATICA
RealDigits[-Log[12]/12 - PolyGamma[1/12]/12, 10, 103] // First
PROG
(PARI) default(realprecision, 100); Euler/12 + 1/24*(Pi*(2+sqrt(3)) - 2*(sqrt(3)-1)*log(2) + log(3) + 4*sqrt(3)*log(sqrt(3)+1)) \\ G. C. Greubel, Aug 28 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/12 + (1/24)*(Pi(R)*(2+Sqrt(3)) - 2*(Sqrt(3)-1)*Log(2) + Log(3) + 4*Sqrt(3)*Log(Sqrt(3)+1)); // G. C. Greubel, Aug 28 2018
Continued fraction for log(12).
+10
3
2, 2, 16, 15, 1, 2, 1, 1, 1, 16, 1, 12, 1, 2, 1, 6, 1, 6, 4, 3, 1, 4, 10, 3, 1, 1, 28, 1, 1, 1, 1, 2, 4, 3, 1, 2, 1, 1, 25, 3, 1, 44, 1, 3, 1, 25, 1, 17, 7, 15, 7, 15, 1, 3, 1, 2, 1, 1, 2, 7, 1, 1, 1, 4, 1, 16, 1, 4, 6, 1, 1, 1, 1, 12, 4, 7, 14, 11, 1, 1, 1, 2
EXAMPLE
2.4849066497880003102297094... = 2 + 1/(2 + 1/(16 + 1/(15 + 1/(1 + ...)))). - Harry J. Smith, May 16 2009
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(12)); for (n=1, 20000, write("b016740.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 16 2009
(Magma) ContinuedFraction(Log(12)); // G. C. Greubel, Sep 15 2018
Decimal expansion of (7/3)*log(log(12)) - exp(gamma)*log(log(12))^2, where gamma is the Euler-Mascheroni constant ( A001620).
+10
1
6, 4, 8, 2, 1, 3, 6, 4, 9, 4, 2, 1, 7, 9, 9, 7, 6, 2, 7, 2, 0, 0, 9, 4, 2, 5, 6, 4, 3, 5, 3, 2, 9, 0, 1, 8, 9, 9, 3, 0, 4, 4, 7, 9, 9, 1, 1, 0, 1, 5, 4, 3, 1, 5, 7, 5, 4, 8, 0, 0, 1, 4, 6, 7, 0, 6, 3, 4, 4, 5, 9, 7, 1, 5, 4, 2, 4, 5, 1, 0, 2, 4, 4, 9, 5, 4, 3, 1, 7, 6
COMMENTS
Theorem 2 in Robin (1984) states that, for n >= 3, sigma(n)/n <= exp(gamma)*log(log(n)) + c/log(log(n)), with equality for n = 12, where sigma is the sum-of-divisors function ( A000203) and c is the constant given by the present sequence. Cf. also Weisstein, eqs. (29) - (33).
REFERENCES
G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, Journal de Mathématiques Pures et Appliquées, 63 (1984), pp. 187-213 (in French). See A073004 for a scanned copy.
EXAMPLE
0.64821364942179976272009425643532901899304479911015...
MATHEMATICA
First[RealDigits[7/3*# - Exp[EulerGamma]*#^2, 10, 100]] & [Log[Log[12]]]
Decimal expansion of log(2^(1/2)*3^(1/3) / 6^(1/6)).
+10
0
4, 1, 4, 1, 5, 1, 1, 0, 8, 2, 9, 8, 0, 0, 0, 0, 5, 1, 7, 0, 4, 9, 5, 1, 5, 7, 9, 9, 7, 3, 1, 4, 6, 4, 7, 3, 4, 6, 6, 4, 1, 5, 1, 3, 7, 7, 5, 7, 2, 0, 9, 9, 9, 3, 3, 2, 9, 3, 4, 2, 3, 9, 2, 1, 0, 4, 0, 4, 6, 9, 2, 2, 8, 5, 9, 6, 6, 6, 3, 9, 9, 6, 8, 0, 8, 9, 0, 4, 0, 1, 4, 6, 7, 7, 6, 1, 5, 7, 7, 3
FORMULA
Equals (1/6)*log(12) = (1/6)* A016635.
Equals (1/3)*log(2) + (1/6)*log(3) = (1/3)* A002162 + (1/6)* A002391. (End)
EXAMPLE
0.4141511082980000517049515799731464734664151377572...
MATHEMATICA
RealDigits[Log[2^(1/2)*3^(1/3) / 6^(1/6)], 10, 101][[1]] (* Georg Fischer, Apr 04 2020 *)
Search completed in 0.006 seconds
|