[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a016635 -id:a016635
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of the generalized Euler constant gamma(5,12) (negated).
+10
15
0, 0, 3, 3, 7, 2, 9, 4, 9, 3, 2, 2, 4, 0, 3, 2, 9, 7, 0, 2, 5, 0, 3, 2, 4, 9, 4, 8, 1, 8, 5, 9, 2, 1, 9, 4, 6, 1, 6, 0, 3, 4, 0, 3, 4, 6, 9, 9, 4, 9, 8, 3, 9, 5, 3, 8, 7, 3, 1, 6, 7, 0, 0, 8, 6, 3, 1, 2, 7, 1, 0, 3, 1, 6, 7, 6, 1, 5, 8, 5, 1, 3, 3, 3, 6, 5, 9, 1, 2, 3, 6, 3, 9, 7, 0, 0, 3, 1, 1, 9, 9, 9, 7, 7, 8, 7, 9
OFFSET
0,3
LINKS
D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975), p. 134.
FORMULA
Equals EulerGamma/12 + 1/24*(Pi*(2-sqrt(3)) + 2*(sqrt(3)+1)*log(2) + log(3) - 4*sqrt(3) * log(sqrt(3)+1)).
Equals -(psi(5/12) + log(12))/12. - Amiram Eldar, Jan 07 2024
EXAMPLE
-0.0033729493224032970250324948185921946160340346994983953873167...
MATHEMATICA
Join[{0, 0}, RealDigits[-Log[12]/12 - PolyGamma[5/12]/12, 10, 105] // First]
PROG
(PARI) default(realprecision, 100); Euler/12 + 1/24*(Pi*(2-sqrt(3)) + 2*(sqrt(3)+1)*log(2) + log(3) - 4*sqrt(3)*log(sqrt(3)+1)) \\ G. C. Greubel, Aug 27 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/12 + 1/24*(Pi(R)*(2-Sqrt(3)) + 2*(Sqrt(3)+1)*Log(2) + Log(3) - 4*Sqrt(3)*Log(Sqrt(3)+1)); // G. C. Greubel, Aug 27 2018
CROSSREFS
Cf. A001620 (EulerGamma), A016635, A228725 (gamma(1,2)), A256425 (gamma(1,3)), A256778-A256784 (selection of ruler-and-compass constructible gamma(r,k)).
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
Decimal expansion of log_12 (28/13).
+10
9
3, 0, 8, 7, 6, 6, 1, 8, 7, 5, 6, 6, 4, 9, 2, 8, 9, 9, 7, 8, 8, 4, 0, 1, 0, 5, 4, 6, 6, 2, 8, 8, 7, 8, 6, 6, 1, 4, 8, 1, 6, 3, 1, 7, 7, 1, 5, 5, 7, 1, 4, 8, 4, 3, 9, 2, 5, 7, 9, 8, 0, 2, 3, 5, 5, 0, 8, 4, 0, 6, 6, 7, 0, 6, 4, 4, 3, 1, 6, 7, 6, 1, 5, 4, 2, 7, 3
OFFSET
0,1
COMMENTS
Decimal expansion of maximal value of function alpha(n) = alpha-deviation from primality of number n = log_n(sigma(n)) - log_n(n+1) = log_n[sigma(n) / (n+1)] for n = 12, when alpha(12) = log_12(sigma(12)) - log_12(12+1) = log_12(28) - log_12(13) = log_12 (28/13) = 0,308766187…; alpha(p) = 0 for p = prime.
FORMULA
Decimal expansion of (A016651-A016636) / A016635.
EXAMPLE
0,3087661875664928997884010546628878661481631771557148…
MATHEMATICA
RealDigits[Log[12, 28/13], 10, 120][[1]] (* Harvey P. Dale, Apr 17 2022 *)
PROG
(PARI) log(28/13)/log(12) \\ Michel Marcus, Dec 11 2014
KEYWORD
nonn,cons
AUTHOR
Jaroslav Krizek, Jan 03 2014
STATUS
approved
Decimal expansion of the generalized Euler constant gamma(1,12).
+10
9
8, 3, 0, 2, 4, 9, 8, 8, 9, 8, 8, 6, 6, 2, 4, 3, 3, 9, 3, 8, 9, 0, 3, 4, 1, 9, 7, 0, 3, 2, 1, 4, 9, 6, 5, 0, 5, 5, 5, 7, 9, 6, 3, 9, 2, 7, 9, 7, 2, 7, 4, 9, 6, 2, 0, 1, 5, 4, 3, 9, 8, 6, 8, 1, 1, 3, 9, 3, 1, 2, 5, 3, 4, 4, 1, 4, 2, 7, 9, 9, 6, 1, 0, 1, 6, 0, 1, 3, 0, 5, 8, 1, 2, 5, 5, 8, 4, 0, 3, 5, 7, 1, 9
OFFSET
0,1
LINKS
D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975), p. 134.
FORMULA
Equals EulerGamma/12 + 1/24*(Pi*(2+sqrt(3)) - 2*(sqrt(3)-1)*log(2) + log(3) + 4*sqrt(3) * log(sqrt(3)+1)).
Equals Sum_{n>=0} (1/(12n+1) - 1/12*log((12n+13)/(12n+1))).
Equals -(psi(1/12) + log(12))/12. - Amiram Eldar, Jan 07 2024
EXAMPLE
0.83024988988662433938903419703214965055579639279727496201543...
MATHEMATICA
RealDigits[-Log[12]/12 - PolyGamma[1/12]/12, 10, 103] // First
PROG
(PARI) default(realprecision, 100); Euler/12 + 1/24*(Pi*(2+sqrt(3)) - 2*(sqrt(3)-1)*log(2) + log(3) + 4*sqrt(3)*log(sqrt(3)+1)) \\ G. C. Greubel, Aug 28 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/12 + (1/24)*(Pi(R)*(2+Sqrt(3)) - 2*(Sqrt(3)-1)*Log(2) + Log(3) + 4*Sqrt(3)*Log(Sqrt(3)+1)); // G. C. Greubel, Aug 28 2018
CROSSREFS
Cf. A001620 (EulerGamma), A016635, A228725 (gamma(1,2)), A256425 (gamma(1,3)), A256778-A256784 (selection of ruler-and-compass constructible gamma(r,k)).
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
Continued fraction for log(12).
+10
3
2, 2, 16, 15, 1, 2, 1, 1, 1, 16, 1, 12, 1, 2, 1, 6, 1, 6, 4, 3, 1, 4, 10, 3, 1, 1, 28, 1, 1, 1, 1, 2, 4, 3, 1, 2, 1, 1, 25, 3, 1, 44, 1, 3, 1, 25, 1, 17, 7, 15, 7, 15, 1, 3, 1, 2, 1, 1, 2, 7, 1, 1, 1, 4, 1, 16, 1, 4, 6, 1, 1, 1, 1, 12, 4, 7, 14, 11, 1, 1, 1, 2
OFFSET
0,1
LINKS
G. Xiao, Contfrac
EXAMPLE
2.4849066497880003102297094... = 2 + 1/(2 + 1/(16 + 1/(15 + 1/(1 + ...)))). - Harry J. Smith, May 16 2009
MATHEMATICA
ContinuedFraction[Log[12], 100] (* G. C. Greubel, Sep 15 2018 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(12)); for (n=1, 20000, write("b016740.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 16 2009
(Magma) ContinuedFraction(Log(12)); // G. C. Greubel, Sep 15 2018
CROSSREFS
Cf. A016635 (decimal expansion).
KEYWORD
nonn,cofr
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 10 2024
STATUS
approved
Decimal expansion of (7/3)*log(log(12)) - exp(gamma)*log(log(12))^2, where gamma is the Euler-Mascheroni constant (A001620).
+10
1
6, 4, 8, 2, 1, 3, 6, 4, 9, 4, 2, 1, 7, 9, 9, 7, 6, 2, 7, 2, 0, 0, 9, 4, 2, 5, 6, 4, 3, 5, 3, 2, 9, 0, 1, 8, 9, 9, 3, 0, 4, 4, 7, 9, 9, 1, 1, 0, 1, 5, 4, 3, 1, 5, 7, 5, 4, 8, 0, 0, 1, 4, 6, 7, 0, 6, 3, 4, 4, 5, 9, 7, 1, 5, 4, 2, 4, 5, 1, 0, 2, 4, 4, 9, 5, 4, 3, 1, 7, 6
OFFSET
0,1
COMMENTS
Theorem 2 in Robin (1984) states that, for n >= 3, sigma(n)/n <= exp(gamma)*log(log(n)) + c/log(log(n)), with equality for n = 12, where sigma is the sum-of-divisors function (A000203) and c is the constant given by the present sequence. Cf. also Weisstein, eqs. (29) - (33).
REFERENCES
G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, Journal de Mathématiques Pures et Appliquées, 63 (1984), pp. 187-213 (in French). See A073004 for a scanned copy.
LINKS
Eric Weisstein's World of Mathematics, Divisor Function, see eq. (31).
FORMULA
Equals (7/3)*log(A016635) - A073004*log(A016635)^2.
EXAMPLE
0.64821364942179976272009425643532901899304479911015...
MATHEMATICA
First[RealDigits[7/3*# - Exp[EulerGamma]*#^2, 10, 100]] & [Log[Log[12]]]
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Jan 14 2025
STATUS
approved
Decimal expansion of log(2^(1/2)*3^(1/3) / 6^(1/6)).
+10
0
4, 1, 4, 1, 5, 1, 1, 0, 8, 2, 9, 8, 0, 0, 0, 0, 5, 1, 7, 0, 4, 9, 5, 1, 5, 7, 9, 9, 7, 3, 1, 4, 6, 4, 7, 3, 4, 6, 6, 4, 1, 5, 1, 3, 7, 7, 5, 7, 2, 0, 9, 9, 9, 3, 3, 2, 9, 3, 4, 2, 3, 9, 2, 1, 0, 4, 0, 4, 6, 9, 2, 2, 8, 5, 9, 6, 6, 6, 3, 9, 9, 6, 8, 0, 8, 9, 0, 4, 0, 1, 4, 6, 7, 7, 6, 1, 5, 7, 7, 3
OFFSET
0,1
FORMULA
From Jianing Song, Jan 23 2019: (Start)
Equals (1/6)*log(12) = (1/6)*A016635.
Equals (1/3)*log(2) + (1/6)*log(3) = (1/3)*A002162 + (1/6)*A002391. (End)
Equals Sum_{k>=1} H(2*k-1)/4^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, May 30 2021
EXAMPLE
0.4141511082980000517049515799731464734664151377572...
MATHEMATICA
RealDigits[Log[2^(1/2)*3^(1/3) / 6^(1/6)], 10, 101][[1]] (* Georg Fischer, Apr 04 2020 *)
PROG
(PARI) log( 2^(1/2)*3^(1/3) / 6^(1/6) ) \\ Charles R Greathouse IV, May 15 2019
CROSSREFS
Suggested by A230191.
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Jan 20 2019
EXTENSIONS
a(99) corrected by Georg Fischer, Apr 04 2020
STATUS
approved

Search completed in 0.006 seconds