[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a003423 -id:a003423
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(0) = 3; thereafter, a(n) = a(n-1)^2 - 2.
(Formerly M2705 N1084)
+10
41
3, 7, 47, 2207, 4870847, 23725150497407, 562882766124611619513723647, 316837008400094222150776738483768236006420971486980607
OFFSET
0,1
COMMENTS
Expansion of 1/phi: 1/phi = (1-1/3)*(1-1/((3-1)*7))*(1-1/(((3-1)*7-1)*47))*(1-1/((((3-1)*7-1)*47-1)*2207))... (phi being the golden ration (1+sqrt(5))/2). - Thomas Baruchel, Nov 06 2003
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
Starting with 7, the terms end with 7,47,07,47,07,..., of the form 8a+7 where a = 0,1,55,121771,... Conjecture: Every a is squarefree, every other a is divisible by 55, the a's are a subset of A046194, the heptagonal triangular numbers (the first, 2nd, 3rd, 6th, 11th, ?, ... terms). - Gerald McGarvey, Aug 08 2004
Also the reduced numerator of the convergents to sqrt(5) using Newton's recursion x = (5/x+x)/2. - Cino Hilliard, Sep 28 2008
The subsequence of primes begins a(n) for n = 0, 1, 2, 3. - Jonathan Vos Post, Feb 26 2011
We have Sum_{n=0..N} a(n)^2 = 2*(N+1) + Sum_{n=1..N+1} a(n), Sum_{n=0..N} a(n)^4 = 5*(Sum_{n=1..N+1} a(n)) + a(N+1)^2 + 6*N -3, etc. which is very interesting with respect to the fact that a(n) = Lucas(2^(n+1)); see W. Webb's problem in Witula-Slota's paper. - Roman Witula, Nov 02 2012
From Peter Bala, Nov 11 2012: (Start)
The present sequence corresponds to the case x = 3 of the following general remarks.
The recurrence a(n+1) = a(n)^2 - 2 with initial condition a(0) = x > 2 has the solution a(n) = ((x + sqrt(x^2 - 4))/2)^(2^n) + ((x - sqrt(x^2 - 4))/2)^(2^n).
We have the product expansion sqrt(x + 2)/sqrt(x - 2) = Product_{n>=0} (1 + 2/a(n)) (essentially due to Euler - see Mendes-France and van der Poorten). Another expansion is sqrt(x^2 - 4)/(x + 1) = Product_{n>=0} (1 - 1/a(n)), which follows by iterating the identity sqrt(x^2 - 4)/(x + 1) = (1 - 1/x)*sqrt(y^2 - 4)/(y + 1), where y = x^2 - 2.
The sequence b(n) := a(n) - 1 satisfies b(n+1) = b(n)^2 + 2*b(n) - 2. Cases currently in the database are A145502 through A145510. The sequence c(n) := a(n)/2 satisfies c(n+1) = 2*c(n)^2 - 1. Cases currently in the database are A002812, A001601, A005828, A084764 and A084765.
(End)
E. Lucas in Section XIX of "The Theory of Simply Periodic Numerical Functions" (page 56 of English translation) equation "(127) (1-sqrt(5))/2 = -1/1 + 1/3 + 1/(3*7) + 1/(3*7*47) + 1/(3*7*47*2207) + ..." - Michael Somos, Oct 11 2022
Let b(n) = a(n) - 3. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. - Peter Bala, Dec 08 2022
REFERENCES
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 397.
E.-B. Escott, Note #1741, L'Intermédiaire des Mathématiciens, 8 (1901), page 13. - N. J. A. Sloane, Mar 02 2022
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 223.
Édouard Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
Pierre Liardet and Pierre Stambul, Séries d'Engel et fractions continuées, Journal de Théorie des Nombres de Bordeaux 12 (2000), 37-68.
Édouard Lucas, Nouveaux théorèmes d'arithmétique supérieure (annotated scanned copy)
Édouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
M. Mendes France and A. J. van der Poorten, From geometry to Euler identities, Theoret. Comput. Sci., 65 (1989), 213-220.
Chance Sanford, Infinite Series Involving Fibonacci Numbers Via Apéry-Like Formulae, arXiv:1603.03765 [math.NT], 2016.
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
Wikipedia, Engel Expansion.
Roman Wituła and Damian Słota, delta-Fibonacci numbers, Applicable Analysis and Discrete Mathematics, Vol. 3, No. 2 (2009), pp. 310-329.
FORMULA
a(n) = Fibonacci(2^(n+2))/Fibonacci(2^(n+1)) = A058635(n+2)/A058635(n+1). - Len Smiley, May 08 2000, and Artur Jasinski, Oct 05 2008
a(n) = ceiling(c^(2^n)) where c = (3+sqrt(5))/2 = tau^2 is the largest root of x^2-3*x+1=0. - Benoit Cloitre, Dec 03 2002
a(n) = round(G^(2^n)) where G is the golden ratio (A001622). - Artur Jasinski, Sep 22 2008
a(n) = (G^(2^(n+1))-(1-G)^(2^(n+1)))/((G^(2^n))-(1-G)^(2^n)) = G^(2^n)+(1-G)^(2^n) = G^(2^n)+(-G)^(-2^n) where G is the golden ratio. - Artur Jasinski, Oct 05 2008
a(n) = 2*cosh(2^(n+1)*arccosh(sqrt(5)/2)). - Artur Jasinski, Oct 09 2008
a(n) = Fibonacci(2^(n+1)-1) + Fibonacci(2^(n+1)+1). (3-sqrt(5))/2 = 1/3 + 1/(3*7) + 1/(3*7*47) + 1/(3*7*47*2207) + ... (E. Lucas). - Philippe Deléham, Apr 21 2009
a(n)*(a(n+1)-1)/2 = A023039(2^n). - M. F. Hasler, Sep 27 2009
For n >= 1, a(n) = 2 + Product_{i=0..n-1} (a(i) + 2). - Vladimir Shevelev, Nov 28 2010
a(n) = 2*T(2^n,3/2) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011
From Peter Bala, Oct 31 2012: (Start)
Engel expansion of 1/2*(3 - sqrt(5)). Thus 1/2*(3 - sqrt(5)) = 1/3 + 1/(3*7) + 1/(3*7*47) + ... as noted above by Deleham. See Liardet and Stambul.
sqrt(5)/4 = Product_{n>=0} (1 - 1/a(n)).
sqrt(5) = Product_{n>=0} (1 + 2/a(n)). (End)
a(n) - 1 = A145502(n+1). - Peter Bala, Nov 11 2012
a(n) == 2 (mod 9), for n > 1. - Ivan N. Ianakiev, Dec 25 2013
From Amiram Eldar, Oct 22 2020: (Start)
a(n) = A000032(2^(n+1)).
Sum_{k>=0} 1/a(k) = -1 + A338304. (End)
a(n) = (A000045(m+2^(n+2))+A000045(m))/A000045(m+2^(n+1)) for any m>=0. - Alexander Burstein, Apr 10 2021
a(n) = 2*cos(2^n*arccos(3/2)). - Peter Luschny, Oct 12 2022
a(n) == -1 ( mod 2^(n+2) ). - Peter Bala, Nov 07 2022
a(n) = 5*Fibonacci(2^n)^2+2 = 5*A058635(n)^2+2, for n>0. - Jianglin Luo, Sep 21 2023
Sum_{n>=0} a(n)/Fibonacci(2^(n+2)) = A094874 (Sanford, 2016). - Amiram Eldar, Mar 01 2024
EXAMPLE
From Cino Hilliard, Sep 28 2008: (Start)
Init x=1;
x = (5/1 + 1)/2 = 3/1;
x = (5/3 + 3)/2 = 7/3;
x = ((5/7)/3 + 7/3)/2 = 47/21;
x = ((5/47)/21 + 47/21)/2 = 2207/987;
(2207/987)^2 = 5.000004106... (End)
MAPLE
a:= n-> simplify(2*ChebyshevT(2^n, 3/2), 'ChebyshevT'):
seq(a(n), n=0..8);
MATHEMATICA
c = N[GoldenRatio, 1000]; Table[Round[c^(2^n)], {n, 1, 10}] (* Artur Jasinski, Sep 22 2008 *)
c = (1 + Sqrt[5])/2; Table[Expand[c^(2^n) + (-c + 1)^(2^n)], {n, 1, 8}] (* Artur Jasinski, Oct 05 2008 *)
G = (1 + Sqrt[5])/2; Table[Expand[(G^(2^(n + 1)) - (1 - G)^(2^(n + 1)))/Sqrt[5]]/Expand[((G^(2^n)) - (1 - G)^(2^n))/Sqrt[5]], {n, 1, 10}] (* Artur Jasinski, Oct 05 2008 *)
Table[2*Cosh[2^n*ArcCosh[Sqrt[5]/2], {n, 1, 30}] (* Artur Jasinski, Oct 09 2008 *)
NestList[#^2-2&, 3, 10] (* Harvey P. Dale, Dec 17 2014 *)
Table[LucasL[2^n], {n, 1, 8}] (* Amiram Eldar, Oct 22 2020 *)
PROG
(PARI) {a(n) = if( n<1, 3*(n==0), a(n-1)^2 - 2)}; /* Michael Somos, Mar 14 2004 */
(PARI) g(n, p) = x=1; for(j=1, p, x=(n/x+x)/2; print1(numerator(x)", "));
g(5, 8) \\ Cino Hilliard, Sep 28 2008
(PARI) {a(n) = my(w = quadgen(5)); if( n<0, 0, n++; imag( (2*w - 1) * w^2^n ))}; /* Michael Somos, Nov 30 2014 */
(PARI) {a(n) = my(y = x^2-x-1); if( n<0, 0, n++; for(i=1, n, y = polgraeffe(y)); -polcoeff(y, 1))}; /* Michael Somos, Nov 30 2014 */
(Maxima)
a[0]:3$
a[n]:=a[n-1]^2-2$
A001566(n):=a[n]$
makelist(A001566(n), n, 0, 7); /* Martin Ettl, Nov 12 2012 */
CROSSREFS
Lucas numbers (A000032) with subscripts that are powers of 2 greater than 1 (Herbert S. Wilf). Cf. A000045.
Cf. A003010 (starting with 4), A003423 (starting with 6), A003487 (starting with 5).
Cf. A058635. - Artur Jasinski, Oct 05 2008
KEYWORD
easy,nonn,nice
STATUS
approved
A Lucas-Lehmer sequence: a(0) = 4; for n>0, a(n) = a(n-1)^2 - 2.
(Formerly M3494)
+10
38
4, 14, 194, 37634, 1416317954, 2005956546822746114, 4023861667741036022825635656102100994, 16191462721115671781777559070120513664958590125499158514329308740975788034
OFFSET
0,1
COMMENTS
Albert Beiler states (page 228 of Recreations in the Theory of Numbers): D. H. Lehmer modified Lucas's test to the relatively simple form: If and only if 2^n-1 divides a(n-2) then 2^n-1 is a prime, otherwise it is composite. Since 2^3 - 1 is a factor of a(1) = 14, 2^3 - 1 = 7 is a prime. - Gary W. Adamson, Jun 07 2003
a(n) - a(n-1) divides a(n+1) - a(n). - Thomas Ordowski, Dec 24 2016
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 228.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 399.
R. K. Guy, Unsolved Problems in Number Theory, Section A3.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 205.
LINKS
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
Larry Ericksen, Primality Testing and Prime Constellations, Šiauliai Mathematical Seminar, Vol. 3 (11), 2008.
James S. Hall, A remark on the primeness of Mersenne numbers, J. London Math. Soc. 28, (1953). 285-287.
D. H. Lehmer, On Lucas's test for the primality of Mersenne's numbers, Journal of the London Mathematical Society 1.3 (1935): 162-165. See page 162.
Pierre Liardet and Pierre Stambul, Séries d'Engel et fractions continuées, Journal de Théorie des Nombres de Bordeaux 12 (2000), 37-68.
Mario Raso, Integer Sequences in Cryptography: A New Generalized Family and its Application, Ph. D. Thesis, Univ. Bari (Italy 2025). See p. 25.
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
Pierluigi Vellucci and Alberto Maria Bersani, The class of Lucas-Lehmer polynomials, arXiv preprint arXiv:1603.01989 [math.CA], 2016.
Pierluigi Vellucci and Alberto Maria Bersani, New formulas for pi involving infinite nested square roots and Gray code, arXiv preprint arXiv:1606.09597 [math.NT], 2016 (The OEIS is cited in version 1, but has been dropped from version 4.)
Eric Weisstein's World of Mathematics, Lucas-Lehmer Test.
Wikipedia, Engel Expansion
FORMULA
a(n) = ceiling((2 + sqrt(3))^(2^n)). - Benoit Cloitre, Nov 30 2002
More generally, if u(0) = z, integer > 2 and u(n) = a(n-1)^2 - 2 then u(n) = ceiling(c^(2^n)) where c = (1/2)*(z+sqrt(z^2-4)) is the largest root of x^2 - zx + 1 = 0. - Benoit Cloitre, Dec 03 2002
a(n) = (2+sqrt(3))^(2^n) + (2-sqrt(3))^(2^n). - John Sillcox (johnsillcox(AT)hotmail.com), Sep 20 2003
a(n) = ceiling(tan(5*Pi/12)^(2^n)). Note: 5*Pi/12 radians is 75 degrees. - Jason M. Follas (jasonfollas(AT)hotmail.com), Jan 16 2004
Sum_{n >= 0} 1/( Product_{k = 0..n} a(k) ) = 2 - sqrt(3). - Paul D. Hanna, Aug 11 2004
From Ulrich Sondermann, Sep 04 2006: (Start)
To generate the n-th number in the sequence: let x = 2^(n-1), a = 2, b = sqrt(3). Take every other term of the binomial expansion (a+b)^x times 2.
E.g., for the 4th term: x = 2^(4-1) = 8, the binomial expansion is: a^8 + 7a^7 b + 28a^6 b^2 + 56a^5 b^3 + 70a^4 b^4 + 56a^3 b^5 + 28a^2 b^6 + 7a b^7 + b^8, every other term times 2: 2(a^8 + 28a^6 b^2 + 70a^4 b^4 + 28a^2 b^6 + b^8) = 2(256 + (28)(64)(3) + (70)(16)(9) + (28)(4)(27) + 81) = 2(18817) = 37634. (End)
a(n) = 2*cosh( 2^(n-1)*log(sqrt(3)+2) ) For n > 0, a(n) = 2 + 3 * 4^n * (Product_{k=0..n-2} (a(k)/2))^2, where a(k)/2 = A002812(k) is a coprime sequence. - M. F. Hasler, Mar 09 2007
a(n) = A003500(2^n). - John Blythe Dobson, Oct 28 2007
a(n) = 2*T(2^n,2) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011
Engel expansion of 2 - sqrt(3). Thus 2 - sqrt(3) = 1/4 + 1/(4*14) + 1/(4*14*194) + ... as noted by Hanna above. See Liardet and Stambul. Cf. A001566, A003423 and A003487. - Peter Bala, Oct 31 2012
From Peter Bala, Nov 11 2012: (Start)
2*sqrt(3)/5 = Product_{n = 0..oo} (1 - 1/a(n)).
sqrt(3) = Product_{n = 0..oo} (1 + 2/a(n)).
a(n) - 1 = A145503(n+1).
a(n) = 2*A002812(n). (End)
a(n+1) - a(n) = a(n)^2 - a(n-1)^2. - Thomas Ordowski, Dec 24 2016
a(n) = 2*cos(2^n * arccos(2)). - Ryan Brooks, Oct 27 2020
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2 + 2*Product_{k = 0..n-1} (a(k) + 2) for n >= 1.
Let b(n) = a(n) - 4. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)
MAPLE
a := n-> if n>0 then a(n-1)^2-2 else 4 fi: 'a(i)' $ i=0..9; # M. F. Hasler, Mar 09 2007
a := n-> simplify(2*ChebyshevT(2^n, 2), 'ChebyshevT'): seq(a(n), n=0..7);
MATHEMATICA
seqLucasLehmer[0] = 4; seqLucasLehmer[n_] := seqLucasLehmer[n - 1]^2 - 2; Array[seqLucasLehmer, 8, 0] (* Robert G. Wilson v, Jun 28 2012 *)
PROG
(PARI)
a(n)=if(n, a(n-1)^2-2, 4)
vector(10, i, a(i-1)) \\ M. F. Hasler, Mar 09 2007
(Magma) [n le 1 select 4 else Self(n-1)^2-2: n in [1..10]]; // Vincenzo Librandi, Aug 24 2015
(Python)
from itertools import accumulate
def f(anm1, _): return anm1**2 - 2
print(list(accumulate([4]*8, f))) # Michael S. Branicky, Apr 14 2021
CROSSREFS
Cf. A001566 (starting with 3), A003423 (starting with 6), A003487 (starting with 5).
KEYWORD
nonn,changed
EXTENSIONS
One more term from Thomas A. Rockwell (LlewkcoRAT(AT)aol.com), Jan 18 2005
STATUS
approved
a(n) = 2*a(n-1)^2 - 1, if n>1. a(0)=1, a(1)=3.
(Formerly M3042 N1234)
+10
22
1, 3, 17, 577, 665857, 886731088897, 1572584048032918633353217, 4946041176255201878775086487573351061418968498177
OFFSET
0,2
COMMENTS
Reduced numerators of Newton's iteration for sqrt(2). - Eric W. Weisstein
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
Evaluation of the 2^n - 1 degree interpolating polynomial of 1/x at Chebyshev nodes in the interval (1,2): v = 1.0; for(i = 1, n, v *= 4*(a(i) - x*v)); v *= 2/a(n+1). - Jose Hortal, Apr 07 2012
Smallest positive integer x satisfying the Pell equation x^2 - 2^(2*n+1) * y^2 = 1, for n > 0. - A.H.M. Smeets, Sep 29 2017
REFERENCES
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 376.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy]
M. Mendes France and A. J. van der Poorten, From geometry to Euler identities, Theoret. Comput. Sci., 65 (1989), 213-220.
Eric Weisstein's World of Mathematics, Newtons Iteration.
Eric Weisstein's World of Mathematics, Square Root.
Eric Weisstein's World of Mathematics, Pythagoras's Constant.
H. S. Wilf, D. C. B. Marsh and J. V. Whittaker, Problem E1093, Amer. Math. Monthly, 61 (1954), 424-425.
FORMULA
From Mario Catalani (mario.catalani(AT)unito.it), May 27 2003, May 30 2003: (Start)
a(n) = a(n-1)^2 + 2*A051009(n)^2 for n > 0.
a(n)^2 = 2*A051009(n+1)^2 + 1.
a(n) = Sum_{r=0..2^(n-1)} binomial(2^n, 2*r)*2^r. (End)
Expansion of 1/sqrt(2) as an infinite product: 1/sqrt(2) = Product_{k>=1} (1 - 1/(a(n)+1)). a(1)=3; a(n) = floor(1/(1-1/(sqrt(2)*Product_{k=1..n-1} 1-1/(a(k)+1)))). - Thomas Baruchel, Nov 06 2003
2*a(n+1) = A003423(n).
a(n) = (1/2)*((1 + sqrt(2))^(2^n) + (1 - sqrt(2))^(2^n)). - Artur Jasinski, Oct 10 2008
For n > 1: a(n) - 1 = 4^n * Product_{i=1..n-2} a(i)^2. - Jose Hortal, Apr 13 2012
From Peter Bala, Nov 11 2012: (Start)
4*sqrt(2)/7 = Product_{n>=1} (1 - 1/(2*a(n))).
sqrt(2) = Product_{n>=1} (1 + 1/a(n)).
a(n) = (1/2)*A003423(n-1). (End)
a(n) = cos(2^(n-1) * arccos(3)) = cosh(2^(n-1) * log(3 + 2*sqrt(2))) for n >= 1. - Daniel Suteu, Jul 28 2016
a(n+1) = T(2^n,3), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Feb 01 2017
a(n) = A001541(2^(n-1)). - A.H.M. Smeets, May 28 2017
MATHEMATICA
Table[Simplify[Expand[(1/2) ((1 + Sqrt[2])^(2^n) + (1 - Sqrt[2])^(2^n))]], {n, 0, 7}] (* Artur Jasinski, Oct 10 2008 *)
Join[{1}, NestList[2#^2-1&, 3, 7]] (* Harvey P. Dale, Mar 24 2011 *)
PROG
(PARI) a(n)=if(n<1, n==0, 2*a(n-1)^2-1)
CROSSREFS
a(n) = A001333(2^n).
KEYWORD
nonn,easy,nice,frac,changed
STATUS
approved
a(n) = a(n-1)^2 - 2, with a(0) = 5.
(Formerly M3926)
+10
9
5, 23, 527, 277727, 77132286527, 5949389624883225721727, 35395236908668169265765137996816180039862527, 1252822795820745419377249396736955608088527968701950139470082687906021780162741058825727
OFFSET
0,1
COMMENTS
The next term has 175 digits. - Harvey P. Dale, Feb 19 2015
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. Liardet and P. Stambul, Séries d'Engel et fractions continuées, Journal de Théorie des Nombres de Bordeaux 12 (2000), 37-68.
Wikipedia, Engel Expansion
FORMULA
a(n) = ceiling(c^(2^n)) where c=(5+sqrt(21))/2 is the largest root of x^2-5x+1=0. - Benoit Cloitre, Dec 03 2002
a(n) = 2*T(2^n,5/2) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011
Engel expansion of 1/2*(5 - sqrt(21)). Thus 1/2*(5 - sqrt(21)) = 1/5 + 1/(5*23) + 1/(5*23*527) + .... See Liardet and Stambul. Cf. A001566, A003010 and A003423. - Peter Bala, Oct 31 2012
From Peter Bala, Nov 11 2012: (Start)
a(n) = ((5 + sqrt(21))/2)^(2^n) + ((5 - sqrt(21))/2)^(2^n).
sqrt(21)/6 = Product_{n = 0..oo} (1 - 1/a(n)).
sqrt(7/3) = Product_{n = 0..oo} (1 + 2/a(n)).
a(n) - 1 = A145504(n+1). (End)
a(n) = A003501(2^n). - Michael Somos, Dec 06 2016
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2 + 3*Product_{k = 0 ..n-1} (a(k) + 2) for n >= 1.
Let b(n) = a(n) - 5. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)
MAPLE
a:= n-> simplify(2*ChebyshevT(2^n, 1/2*5), 'ChebyshevT'):
seq(a(n), n=0..7);
MATHEMATICA
NestList[#^2-2&, 5, 10] (* Harvey P. Dale, Feb 19 2015 *)
a[ n_] := If[ n < 0, 0, 2 ChebyshevT[2^n, 5/2]]; (* Michael Somos, Dec 06 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, polchebyshev(2^n, 1, 5/2) * 2)}; /* Michael Somos, Dec 06 2016 */
CROSSREFS
Cf. A001566 (starting with 3), A003010 (starting with 4), A003423 (starting with 6). A001601, A145504.
KEYWORD
nonn,easy
EXTENSIONS
One more term from Harvey P. Dale, Feb 19 2015
STATUS
approved
Optimal ascending continued fraction expansion of sqrt(2)-1.
+10
5
2, -6, 34, 1154, 1331714, 1773462177794, 3145168096065837266706434, 9892082352510403757550172975146702122837936996354
OFFSET
1,1
COMMENTS
See A228929 for the definition of "optimal ascending continued fraction".
Conjecture: The terms from a(3) are all positive and can be generated by the recurrence relation a(k+1) = a(k)^2 - 2.
This relation was studied by Lucas with reference to Engel expansion.
This recurrence is not peculiar of sqrt(2) but is present in the expansion of the square root of many other numbers, starting from some term onward, but not for all numbers. Here is a list of the numbers in range 1..200 having the recurrence: 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 45, 47, 48, 50, 51, 52, 54, 55, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 70, 71, 72, 74, 75, 77, 78, 79, 80, 82, 83, 84, 87, 88, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 110, 111, 112, 114, 117, 119, 120, 122, 123, 124, 126, 128, 130, 132, 133, 135, 136, 138, 140, 141, 142, 143, 145, 146, 147, 148, 150, 152, 155, 156, 158, 162, 164, 165, 167, 168, 170, 171, 174, 175, 178, 180, 182, 183, 185, 187, 188, 189, 192, 194, 195, 197, 198, 200
Essentially the same as A003423. - R. J. Mathar, Sep 21 2013
FORMULA
a(n) = a(n-1)^2 - 2, for n > 2.
For n>2, a(n) = (sqrt(2)+1)^(2^(n-1)) + (sqrt(2)-1)^(2^(n-1)). - Vaclav Kotesovec, Sep 20 2013
EXAMPLE
sqrt(2)=1+1/2*(1-1/6*(1+1/34*(1+1/1154*(1+1/1331714*(1+1/1773462177794*(1+.....))))))
MAPLE
ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
# List the first 8 terms of the expansion of sqrt(2)-1
ArticoExp(sqrt(2), 8)
MATHEMATICA
Flatten[{2, RecurrenceTable[{a[n] == a[n-1]^2 - 2, a[2] == -6}, a, {n, 2, 10}]}] (* Vaclav Kotesovec, Sep 20 2013 *)
CROSSREFS
KEYWORD
sign,cofr,easy
AUTHOR
Giovanni Artico, Sep 09 2013
EXTENSIONS
Added a pdf file with a proof of the conjecture by Giovanni Artico
STATUS
approved
a(n+1)=a(n)^2+2*a(n)-2 and a(1)=5
+10
3
5, 33, 1153, 1331713, 1773462177793, 3145168096065837266706433, 9892082352510403757550172975146702122837936996353
OFFSET
1,1
COMMENTS
General formula for a(n+1)=a(n)^2+2*a(n)-2 and a(1)=k+1 is a(n)=Floor[((k + Sqrt[k^2 + 4])/2)^(2^((n+1) - 1))
FORMULA
From Peter Bala, Nov 12 2012: (Start)
a(n) = alpha^(2^(n-1)) + (1/alpha)^(2^(n-1)) - 1, where alpha := 3 + 2*sqrt(2).
a(n) = (1 + sqrt(2))^(2^n) + (sqrt(2) - 1)^(2^n) - 1.
a(n) = A003423(n-1) - 1. a(n) = 2*A001601(n) - 1. a(n) = 4*A190840(n-1) + 1.
Recurrence: a(n) = 7*{product {k = 1..n-1} a(k)} - 2 with a(1) = 5.
Product {n = 1..inf} (1 + 1/a(n)) = 7/8*sqrt(2).
Product {n = 1..inf} (1 + 2/(a(n) + 1)) = sqrt(2).
(End)
MATHEMATICA
aa = {}; k = 5; Do[AppendTo[aa, k]; k = k^2 + 2 k - 2, {n, 1, 10}]; aa
or
k =4; Table[Floor[((k + Sqrt[k^2 + 4])/2)^(2^(n - 1))], {n, 2, 7}] (*Artur Jasinski*)
NestList[#^2+2#-2&, 5, 7] (* Harvey P. Dale, Mar 19 2011 *)
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 11 2008
STATUS
approved
Recurrence equation a(n+1) = a(n)^4 - 4*a(n)^2 + 2 with a(0) = 6.
+10
3
6, 1154, 1773462177794, 9892082352510403757550172975146702122837936996354
OFFSET
0,1
COMMENTS
Bisection of A003423.
FORMULA
Let alpha = 3 + 2*sqrt(2). Then a(n) = (alpha)^(4^n) + (1/alpha)^(4^n).
a(n) = A003423(2*n) = A003499(4^n).
Product {n >= 0} ((1 + 2/a(n))/(1 - 2/a(n)^2)) = sqrt(2).
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2*T(4^n,3), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Let b(n) = a(n) - 6. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Nov 13 2012
STATUS
approved
a(n) is the numerator of the Heron sequence with h(0)=3.
+10
1
3, 11, 119, 14159, 200477279, 40191139395243839, 1615327685887921300502934267457919, 2609283532796026943395592527806764363779539144932833602430435810559
OFFSET
0,1
COMMENTS
The denominator of the Heron sequence is in A319750.
The following relationship holds between the numerator of the Heron sequence and the numerator of the continued fraction A041018(n)/A041019(n) convergent to sqrt(13).
n even: a(n)=A041018((5*2^n-5)/3).
n odd: a(n)=A041018((5*2^n-1)/3).
More generally, all numbers c(n)=A078370(n)=(2n+1)^2+4 have the same relationship between the numerator of the Heron sequence and the numerator of the continued fraction convergent to 2n+1.
sqrt(c(n)) has the continued fraction 2n+1; n,1,1,n,4n+2.
hn(n)^2-c(n)*hd(n)^2=4 for n>1.
From Peter Bala, Mar 29 2022: (Start)
Applying Heron's method (sometimes called the Babylonian method) to approximate the square root of the function x^2 + 4, starting with a guess equal to x, produces the sequence of rational functions [x, 2*T(1,(x^2+2)/2)/x, 2*T(2,(x^2+2)/2)/( 2*x*T(1,(x^2+2)/2) ), 2*T(4,(x^2+2)/2)/( 4*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2) ), 2*T(8,(x^2+2)/2)/( 8*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2)*T(4,(x^2+2)/2) ), ...], where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. The present sequence is the case x = 3. Cf. A001566 and A058635 (case x = 1), A081459 and A081460 (essentially the case x = 4). (End)
LINKS
P. Liardet and P. Stambul, Séries d'Engel et fractions continuées, Journal de Théorie des Nombres de Bordeaux 12 (2000), 37-68.
Wikipedia, Engel Expansion
FORMULA
h(n) = hn(n)/hd(n); hn(0)=3; hd(0)=1.
hn(n+1) = (hn(n)^2+13*hd(n)^2)/2.
hd(n+1) = hn(n)*hd(n).
A041018(n) = A010122(n)*A041018(n-1) + A041018(n-2).
A041019(n) = A010122(n)*A041019(n-1) + A041019(n-2).
From Peter Bala, Mar 16 2022: (Start)
a(n) = 2*T(2^(n-1),11/2) for n >= 1, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = 2*T(2^n, 3*sqrt(-1)/2) for n >= 2.
a(n) = ((11 + 3*sqrt(13))/2)^(2^(n-1)) + ((11 - 3*sqrt(13))/2)^(2^(n-1)) for n >= 1.
a(n+1) = a(n)^2 - 2 for n >= 1.
a(n) = A057076(2^(n-1)) for n >= 1.
Engel expansion of (1/6)*(13 - 3*sqrt(13)); that is, (1/6)*(13 - 3*sqrt(13)) = 1/3 + 1/(3*11) + 1/(3*11*119) + .... (Define L(n) = (1/2)*(n - sqrt(n^2 - 4)) for n >= 2 and show L(n) = 1/n + L(n^2-2)/n. Iterate this relation with n = 11. See also Liardet and Stambul, Section 4.)
sqrt(13) = 6*Product_{n >= 0} (1 - 1/a(n)).
sqrt(13) = (9/5)*Product_{n >= 0} (1 + 2/a(n)). See A001566. (End)
EXAMPLE
A078370(2)=29.
hn(0)=A041046(0)=5; hn(1)=A041046(3)=27; hn(2)=A041046(5)=727;
hn(3)=A041046(13)=528527.
MAPLE
hn[0]:=3: hd[0]:=1:
for n from 1 to 6 do
hn[n]:=(hn[n-1]^2+13*hd[n-1]^2)/2:
hd[n]:=hn[n-1]*hd[n-1]:
printf("%5d%40d%40d\n", n, hn[n], hd[n]):
end do:
#alternative program
a := n -> if n = 0 then 3 else simplify( 2*ChebyshevT(2^(n-1), 11/2) ) end if:
seq(a(n), n = 0..7); # Peter Bala, Mar 16 2022
PROG
(Python)
def aupton(nn):
hn, hd, alst = 3, 1, [3]
for n in range(nn):
hn, hd = (hn**2 + 13*hd**2)//2, hn*hd
alst.append(hn)
return alst
print(aupton(7)) # Michael S. Branicky, Mar 16 2022
CROSSREFS
2*T(2^n,x/2) modulo differences of offset: A001566 (x = 3 and x = 7), A003010 (x = 4), A003487 (x = 5), A003423 (x = 6), A346625 (x = 8), A135927 (x = 10), A228933 (x = 18).
KEYWORD
nonn,frac,easy
AUTHOR
Paul Weisenhorn, Sep 27 2018
EXTENSIONS
a(6) and a(7) added by Peter Bala, Mar 16 2022
STATUS
approved

Search completed in 0.011 seconds