[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a003231 -id:a003231
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that A003231(A001950(k)) = A001950(A003231(k)) - 1.
(Formerly M2714)
+20
15
3, 8, 11, 16, 19, 21, 24, 29, 32, 37, 42, 45, 50, 53, 55, 58, 63, 66, 71, 74, 76, 79, 84, 87, 92, 97, 100, 105, 108, 110, 113, 118, 121, 126, 129, 131, 134, 139, 142, 144, 147, 152, 155, 160, 163, 165, 168, 173, 176, 181, 186, 189, 194, 197, 199, 202, 207
OFFSET
1,1
COMMENTS
See 3.3 p. 344 in Carlitz link. - Michel Marcus, Feb 02 2014
This is the function named s in [Carlitz]. - Eric M. Schmidt, Aug 14 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
MAPLE
A003234 := proc(n)
option remember;
if n =1 then
3;
else
for a from procname(n-1)+1 do
if A003231(A001950(a)) = A001950(A003231(a))-1 then
return a;
end if;
end do:
end if;
end proc:
seq(A003234(n), n=1..80) ; # R. J. Mathar, Jul 16 2024
MATHEMATICA
a3[n_] := Floor[n (Sqrt[5] + 3)/2];
a5[n_] := Floor[n (Sqrt[5] + 5)/2];
Select[Range[300], a5[a3[#]] == a3[a5[#]]-1&] (* Jean-François Alcover, Jul 31 2018 *)
PROG
(PARI) A001950(n) = floor(n*(sqrt(5)+3)/2);
A003231(n) = floor(n*(sqrt(5)+5)/2);
isok(n) = A003231(A001950(n)) == A001950(A003231(n)) - 1; \\ Michel Marcus, Feb 02 2014
(Haskell)
a003234 n = a003234_list !! (n-1)
a003234_list = [x | x <- [1..],
a003231 (a001950 x) == a001950 (a003231 x) - 1]
-- Reinhard Zumkeller, Oct 03 2014
(Python)
from math import isqrt
from itertools import count, islice
def A003234_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)+1==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k, count(max(1, startvalue)))
A003234_list = list(islice(A003234_gen(), 30)) # Chai Wah Wu, Sep 02 2022
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Michel Marcus, Feb 02 2014
Definition from Michel Marcus moved from comment to name by Eric M. Schmidt, Aug 17 2014
STATUS
approved
Numbers k such that A003231(A001950(k)) = A001950(A003231(k)).
(Formerly M0944)
+20
4
1, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 72, 73, 75, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91
OFFSET
1,2
COMMENTS
See 3.3 p. 344 in Carlitz link. - Michel Marcus, Feb 02 2014
This is the function named r in [Carlitz]. - Eric M. Schmidt, Aug 14 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
MATHEMATICA
a3221[n_] := Floor[n(5 + Sqrt[5])/2];
a1950[n_] := Floor[n(1 + Sqrt[5])^2/4];
Select[Range[100], a3221[a1950[#]] == a1950[a3221[#]]&] (* Jean-François Alcover, Aug 04 2018 *)
PROG
(PARI) A001950(n) = floor(n*(sqrt(5)+3)/2);
A003231(n) = floor(n*(sqrt(5)+5)/2);
lista(nn) = { for(n=1, nn, if (A003231(A001950(n)) == A001950(A003231(n)), print1(n, ", "))); } \\ Michel Marcus, Feb 02 2014
(Haskell)
a003233 n = a003233_list !! (n-1)
a003233_list = [x | x <- [1..],
a003231 (a001950 x) == a001950 (a003231 x)]
-- Reinhard Zumkeller, Oct 03 2014
(Python)
from math import isqrt
from itertools import count, islice
def A003233_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k, count(max(1, startvalue)))
A003233_list = list(islice(A003233_gen(), 30)) # Chai Wah Wu, Sep 02 2022
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Michel Marcus, Feb 02 2014
Definition from Michel Marcus moved from comment to name by Eric M. Schmidt, Aug 17 2014
STATUS
approved
Floor(r*n), where r = (5 - sqrt(5))/2; the Beatty complement of A003231.
+20
3
1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91
OFFSET
1,2
COMMENTS
Let r = (5 - sqrt(5))/2 and s = (5 + sqrt(5))/2. Then 1/r + 1/s = 1, so that A249115 and A003231 are a pair of complementary Beatty sequences. Let tau = (1 + sqrt(5))/2, the golden ratio. Let R = {h*tau, h >= 1} and S = {k*(tau - 1), k >= 1}. Then A249115(n) is the position of n*(tau - 1) in the ordered union of R and S.
LINKS
Scott V. Tezlaf, On ordinal dynamics and the multiplicity of transfinite cardinality, arXiv:1806.00331 [math.NT], 2018. See p. 9.
MATHEMATICA
Table[Floor[(5 - Sqrt[5])/2*n], {n, 1, 200}]
PROG
(Magma) [Floor(n*(5-Sqrt(5))/2): n in [1..100]]; // Vincenzo Librandi, Oct 25 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 21 2014
STATUS
approved
First differences of the Beatty sequence A003231 for 2 + tau, where tau = golden ratio = (1 + sqrt(5))/2.
+20
3
3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4
OFFSET
1,1
LINKS
FORMULA
a(n) = floor(n*r) - floor(n*r - r), where r = 2 + tau, n >= 1.
MATHEMATICA
z = 500; r = 2+GoldenRatio; b = Table[Floor[k*r], {k, 0, z}]; (* A003231 *)
Differences[b] (* A276867 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 24 2016
STATUS
approved
The number m such that c'(m) = A005206(A003231(n)), where c'(m) = A249115(m) is the m-th positive integer not in A003231.
(Formerly M0635)
+20
2
2, 3, 5, 7, 8, 10, 12, 13, 15, 16, 18, 20, 21, 23, 24, 26, 28, 29, 31, 33, 34, 36, 37, 39, 41, 42, 44, 46, 47, 49, 50, 52, 54, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 88, 89, 91, 92, 94, 96, 97, 99, 101, 102, 104, 105
OFFSET
1,1
COMMENTS
This is the function named phi in the Carlitz-Scoville-Vaughan link. - Eric M. Schmidt, Aug 14 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
FORMULA
Conjecture: a(n) = A078489(n) + n - 1. - Ralf Stephan, Feb 24 2004
KEYWORD
nonn
EXTENSIONS
More terms and a definition from Eric M. Schmidt, Aug 17 2014
Definition edited by Eric M. Schmidt, Aug 07 2015
STATUS
approved
The number m such that A001950(m) = A003231(A003234(n)).
(Formerly M3405)
+20
1
4, 11, 15, 22, 26, 29, 33, 40, 44, 51, 58, 62, 69, 73, 76, 80, 87, 91, 98, 102, 105, 109, 116, 120, 127, 134, 138, 145, 149, 152, 156, 163, 167, 174, 178, 181, 185, 192, 196, 199, 203, 210, 214, 221, 225, 228, 232, 239, 243, 250, 257, 261, 268, 272, 275, 279
OFFSET
1,1
COMMENTS
This is the function named z in [Carlitz]. - Eric M. Schmidt, Aug 14 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
FORMULA
From Eric M. Schmidt, Aug 14 2014: (Start)
a(n) = ceiling((1/phi^2) * A003231(A003234(n))), where phi is the golden ratio.
a(n) = 5*k - 1 - A003231(k), where k = A003234(n). [Cf. Theorems 4.1(ii) and 5.9(vii) in Carlitz.]
Conjecture: a(n) = floor((3-phi)*A003234(n)).
(End)
KEYWORD
nonn
EXTENSIONS
More terms and a definition from Eric M. Schmidt, Aug 14 2014
STATUS
approved
The number m such that A003251(m) = A003231(n).
(Formerly M2521)
+20
1
3, 6, 9, 12, 15, 18, 21, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 61, 64, 67, 70, 73, 76, 79, 82, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 122, 125, 128, 131, 134, 137, 140, 143, 145, 148, 151, 154, 157, 159, 162, 165, 168, 171
OFFSET
1,1
COMMENTS
This is the function named lambda in [Carlitz]. - Eric M. Schmidt, Aug 14 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
FORMULA
a(n) = 3n - j(n), where j(n) is the maximum number such that j(n) <= A003249(n). [Carlitz, Theorem 7.15.] - Eric M. Schmidt, Aug 17 2014
CROSSREFS
Cf. A003253.
KEYWORD
nonn
EXTENSIONS
Sequence corrected and extended by, and definition from Eric M. Schmidt, Aug 17 2014
STATUS
approved
The largest integer m such that A001950(m) < A003231(n).
+20
1
1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 92
OFFSET
1,2
COMMENTS
This is the function named K in [Carlitz].
LINKS
L. Carlitz, R. Scoville, and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
PROG
(PARI) a31(n) = (5*n+sqrtint(5*n^2))\2; \\ A003231
a50(n) = (sqrtint(n^2*5)+n*3)\2; \\ A001950
a(n) = my(m=1, N=a31(n)); while(a50(m) < N, m++); m-1; \\ Michel Marcus, Nov 14 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Sep 17 2014
STATUS
approved
Sums-complement of the Beatty sequence for sqrt(5).
+10
19
1, 10, 19, 28, 37, 48, 57, 66, 75, 86, 95, 104, 113, 124, 133, 142, 151, 162, 171, 180, 189, 198, 209, 218, 227, 236, 247, 256, 265, 274, 285, 294, 303, 312, 323, 332, 341, 350, 359, 370, 379, 388, 397, 408, 417, 426, 435, 446, 455, 464, 473, 484, 493, 502
OFFSET
1,2
COMMENTS
The sums-complement of a sequence s(1), s(2), ... of positive integers is introduced here as the set of numbers c(1), c(2), ... such that no c(n) is a sum s(j)+s(j+1)+...+s(k) for any j and k satisfying 1 <= j <= k. If this set is not empty, the term "sums-complement" also applies to the (possibly finite) sequence of numbers c(n) arranged in increasing order. In particular, the difference sequence D(r) of a Beatty sequence B(r) of an irrational number r > 2 has an infinite sums-complement, abbreviated as SC(r) in the following table:
r B(r) D(r) SC(r)
----------------------------------------------------
2+sqrt(1/2) A182769 A276869 A276888
sqrt(2)+sqrt(3) A110117 A276870 A276889
From Jeffrey Shallit, Aug 15 2023: (Start)
Simpler description: this sequence represents those positive integers that CANNOT be expressed as a difference of two elements of A022839.
There is a 20-state Fibonacci automaton for the terms of this sequence (see a276871.pdf). It takes as input the Zeckendorf representation of n and accepts iff n is a member of A276871. (End)
LINKS
EXAMPLE
The Beatty sequence for sqrt(5) is A022839 = (0,2,4,6,8,11,13,15,...), with difference sequence s = A081427 = (2,2,2,2,3,2,2,2,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,6,7,8,9,11,12,...), with complement (1,10,19,28,37,...).
MATHEMATICA
z = 500; r = Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A022839 *)
t = Differences[b]; (* A081427 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276871 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 24 2016
STATUS
approved
Complement of A003249.
+10
7
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
OFFSET
1,2
COMMENTS
This is the function named u in [Carlitz].
First differs from A187947 at a(46)=51.
LINKS
L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
MATHEMATICA
nmax = 80;
A001950[n_] := Floor[n*GoldenRatio^2];
A003231[n_] := 2*n + Floor[n*GoldenRatio];
A003234 = Select[Range[4*nmax],
A003231[A001950[#]] == A001950[A003231[#]] - 1 &];
A003249[n_] := A001950[A003234[[n]]] + 1;
Complement[Range[A003249[nmax]], Array[A003249, nmax]] (* Jean-François Alcover, Jul 21 2024 *)
PROG
(Haskell)
a242094 n = a242094_list !! (n-1)
a242094_list = c [1..] a003249_list where
c (v:vs) ws'@(w:ws) = if v == w then c vs ws else v : c vs ws'
-- Reinhard Zumkeller, Oct 03 2014
CROSSREFS
Cf. A003249.
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Aug 14 2014
STATUS
approved

Search completed in 0.014 seconds