[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a002981 -id:a002981
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n! + 1.
(Formerly N0107)
+10
91
2, 2, 3, 7, 25, 121, 721, 5041, 40321, 362881, 3628801, 39916801, 479001601, 6227020801, 87178291201, 1307674368001, 20922789888001, 355687428096001, 6402373705728001, 121645100408832001
OFFSET
0,1
COMMENTS
"For n = 4, 5 and 7, n!+1 is a square. Sierpiński asked if there are any other values of n with this property." p. 82 of Ogilvy and Anderson (see A146968).
Number of {12,12*,1*2,21*,2*1}-avoiding signed permutations in the hyperoctahedral group.
After Wilson's Theorem: if (n+1) is prime then (n+1) is the smallest prime factor of a(n). - Karl-Heinz Hofmann, Aug 21 2024
REFERENCES
C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, p. 82.
Wacław Sierpiński, On some unsolved problems of arithmetics, Scripta Mathematica, vol. 25 (1960), p. 125.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2023. - From N. J. A. Sloane, Jun 13 2012
Gerard P. Michon, Wilson's Theorem
Andrew Walker, Factors of n! +- 1
Arthur T. White, Ringing the changes, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 2, 203-215.
Robert G. Wilson v, Explicit factorizations
Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 4.
FORMULA
a(n) = n * (a(n-1) - 1) + 1. - Reinhard Zumkeller, Mar 20 2013
0 = a(n)*(a(n+1) - 5*a(n+2) + 5*a(n+3) - a(n+4)) + a(n+1)*(a(n+1) + a(n+2) - 6*a(n+3) + 2*a(n+4)) + a(n+2)*(3*a(n+2) - a(n+3) - a(n+4)) + a(n+3)*(a(n+3)) if n>=0. - Michael Somos, Apr 23 2014
From Ilya Gutkovskiy, Jan 20 2017: (Start)
E.g.f: exp(x) + 1/(1 - x).
Sum_{n>=0} 1/a(n) = A217702. (End)
EXAMPLE
G.f. = 2 + 2*x + 3*x^2 + 7*x^3 + 25*x^4 + 121*x^5 + 721*x^6 + 5041*x^7 + ...
MATHEMATICA
Range[0, 20]!+1 (* Harvey P. Dale, May 06 2012 *)
PROG
(Magma) [Factorial(n) +1: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
(Maxima) A038507(n):= n!+1$
makelist(A038507(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
(PARI) a(n)=n!+1 \\ Charles R Greathouse IV, Nov 20 2012
(Haskell)
a038507 = (+ 1) . a000142
a038507_list = 2 : f 1 2 where
f x y = z : f (x + 1) z where z = x * (y - 1) + 1
-- Reinhard Zumkeller, Mar 20 2013
(Python)
from math import factorial
def A038507(n): return factorial(n) + 1 # Karl-Heinz Hofmann, Aug 21 2024
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional comments from Jason Earls, Apr 01 2001
Numericana.com URL fixed by Gerard P. Michon, Mar 30 2010
Entry revised by N. J. A. Sloane, Jun 10 2012
STATUS
approved
Numbers k such that k! - 1 is prime.
(Formerly M2321)
+10
87
3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, 469, 546, 974, 1963, 3507, 3610, 6917, 21480, 34790, 94550, 103040, 147855, 208003
OFFSET
1,1
COMMENTS
The corresponding primes n!-1 are often called factorial primes.
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 166, p. 53, Ellipses, Paris 2008.
R. K. Guy, Unsolved Problems in Number Theory, Section A2.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 719 at p. 160.
LINKS
A. Borning, Some results for k!+-1 and 2.3.5...p+-1, Math. Comp., 26:118 (1972), pp. 567-570.
J. P. Buhler et al., Primes of the form n!+-1 and 2.3.5....p+-1, Math. Comp., 38:158 (1982), pp. 639-643.
Chris K. Caldwell, Factorial Primes.
C. K. Caldwell and Y. Gallot, On the primality of n!+-1 and 2*3*5*...*p+-1, Math. Comp., 71:237 (2002), pp. 441-448.
Antonín Čejchan, Michal Křížek, and Lawrence Somer, On Remarkable Properties of Primes Near Factorials and Primorials, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4.
R. K. Guy and N. J. A. Sloane, Correspondence, 1985.
H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987), 197-203. (Annotated scanned copy)
Des MacHale and Joseph Manning, Maximal runs of strictly composite integers, The Mathematical Gazette, 99 (2015), pp 213-219. doi:10.1017/mag.2015.28.
PrimeGrid, Announcement of 94550, (2010). - Felix Fröhlich, Jul 11 2014
PrimeGrid, Announcement of 103040, (2010). - Felix Fröhlich, Jul 11 2014
PrimeGrid, Announcement of 147855, (2013). - Felix Fröhlich, Jul 11 2014
Eric Weisstein's World of Mathematics, Factorial.
Eric Weisstein's World of Mathematics, Factorial Prime.
Eric Weisstein's World of Mathematics, Integer Sequence Primes.
EXAMPLE
From Gus Wiseman, Jul 04 2019: (Start)
The sequence of numbers n! - 1 together with their prime indices begins:
1: {}
5: {3}
23: {9}
119: {4,7}
719: {128}
5039: {675}
40319: {9,273}
362879: {5,5,430}
3628799: {10,11746}
39916799: {6,7,9,992}
479001599: {25306287}
6227020799: {270,256263}
87178291199: {3610490805}
1307674367999: {7,11,11,16,114905}
20922789887999: {436,318519035}
355687428095999: {8,21,10165484947}
6402373705727999: {17,20157,25293727}
121645100408831999: {119,175195,4567455}
2432902008176639999: {11715,659539127675}
(End)
MATHEMATICA
Select[Range[10^3], PrimeQ[ #!-1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
PROG
(PARI) is(n)=ispseudoprime(n!-1) \\ Charles R Greathouse IV, Mar 21 2013
(Magma) [n: n in [0..500] | IsPrime(Factorial(n)-1)]; // Vincenzo Librandi, Sep 07 2017
(Python)
from sympy import factorial, isprime
A002982_list = [n for n in range(1, 10**2) if isprime(factorial(n)-1)] # Chai Wah Wu, Apr 04 2021
CROSSREFS
Cf. A002981 (numbers n such that n!+1 is prime).
Cf. A055490 (primes of form n!-1).
Cf. A088332 (primes of form n!+1).
KEYWORD
hard,more,nonn,nice,changed
EXTENSIONS
21480 sent in by Ken Davis (ken.davis(AT)softwareag.com), Oct 29 2001
Updated Feb 26 2007 by Max Alekseyev, based on progress reported in the Carmody web site.
Inserted missing 21480 and 34790 (see Caldwell). Added 94550, discovered Oct 05 2010. Eric W. Weisstein, Oct 06 2010
103040 was discovered by James Winskill, Dec 14 2010. It has 471794 digits. Corrected by Jens Kruse Andersen, Mar 22 2011
a(26) = 147855 from Felix Fröhlich, Sep 02 2013
a(27) = 208003 from Sou Fukui, Jul 27 2016
STATUS
approved
Hyperfactorials: Product_{k = 1..n} k^k.
(Formerly M3706 N1514)
+10
82
1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, 55696437941726556979200000, 21577941222941856209168026828800000, 215779412229418562091680268288000000000000000, 61564384586635053951550731889313964883968000000000000000
OFFSET
0,3
COMMENTS
A054374 gives the discriminants of the Hermite polynomials in the conventional (physicists') normalization, and A002109 (this sequence) gives the discriminants of the Hermite polynomials in the (in my opinion more natural) probabilists' normalization. See refs Wikipedia and Szego, eq. (6.71.7). - Alan Sokal, Mar 02 2012
a(n) = (-1)^n/det(M_n) where M_n is the n X n matrix m(i,j) = (-1)^i/i^j. - Benoit Cloitre, May 28 2002
a(n) = determinant of the n X n matrix M(n) where m(i,j) = B(n,i,j) and B(n,i,x) denote the Bernstein polynomial: B(n,i,x) = binomial(n,i)*(1-x)^(n-i)*x^i. - Benoit Cloitre, Feb 02 2003
Partial products of A000312. - Reinhard Zumkeller, Jul 07 2012
Number of trailing zeros (A246839) increases every 5 terms since the exponent of the factor 5 increases every 5 terms and the exponent of the factor 2 increases every 2 terms. - Chai Wah Wu, Sep 03 2014
Also the number of minimum distinguishing labelings in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Also shows up in a term in the solution to the generalized version of Raabe's integral. - Jibran Iqbal Shah, Apr 24 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 477.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.
LINKS
Christian Aebi and Grant Cairns, Generalizations of Wilson's Theorem for Double-, Hyper-, Sub-and Superfactorials, The American Mathematical Monthly 122.5 (2015): 433-443.
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012.
blackpenredpen, What is a Hyperfactorial? Youtube video (2018).
CreativeMathProblems, A beautiful integral | Raabe's integral, Youtube Video (2021).
Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [Broken link]
Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [From the Wayback machine]
A. M. Ibrahim, Extension of factorial concept to negative numbers, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42.
Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv:1409.4145 [math.NT], 2014.
Jean-Christophe Pain, Series representations for the logarithm of the Glaisher-Kinkelin constant, arXiv:2304.07629 [math.NT], 2023.
Jean-Christophe Pain, Bounds on the p-adic valuation of the factorial, hyperfactorial and superfactorial, arXiv:2408.00353 [math.NT], 2024. See p. 5.
Vignesh Raman, The Generalized Superfactorial, Hyperfactorial and Primorial functions, arXiv:2012.00882 [math.NT], 2020.
Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl., 332 (2007), 292-314; see Section 5.
László Tóth, Weighted gcd-sum functions, J. Integer Sequences, 14 (2011), Article 11.7.7.
Eric Weisstein's World of Mathematics, Hyperfactorial.
Eric Weisstein's World of Mathematics, K-Function.
FORMULA
a(n)*A000178(n-1) = (n!)^n = A036740(n) for n >= 1.
Determinant of n X n matrix m(i, j) = binomial(i*j, i). - Benoit Cloitre, Aug 27 2003
a(n) = exp(zeta'(-1, n + 1) - zeta'(-1)) where zeta(s, z) is the Hurwitz zeta function. - Peter Luschny, Jun 23 2012
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^k*x). - Paul D. Hanna, Oct 02 2013
a(n) = A240993(n) / A000142(n+1). - Reinhard Zumkeller, Aug 31 2014
a(n) ~ A * n^(n*(n+1)/2 + 1/12) / exp(n^2/4), where A = 1.2824271291006226368753425... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 20 2015
a(n) = Product_{k=1..n} ff(n,k) where ff denotes the falling factorial. - Peter Luschny, Nov 29 2015
log a(n) = (1/2) n^2 log n - (1/4) n^2 + (1/2) n log n + (1/12) log n + log(A) + o(1), where log(A) = A225746 is the logarithm of Glaisher's constant. - Charles R Greathouse IV, Mar 27 2020
From Amiram Eldar, Apr 30 2023: (Start)
Sum_{n>=1} 1/a(n) = A347345.
Sum_{n>=1} (-1)^(n+1)/a(n) = A347352. (End)
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Integral_{x=1..n+1} (x - 1/2 - log(sqrt(2*Pi)) + (n+1-x)*Psi(x)) dx), where Psi(x) is the digamma function.
a(n) = e^(Integral_{x=1..n} (x + 1/2 - log(sqrt(2*Pi)) + log(Gamma(x+1))) dx). (End)
MAPLE
f := proc(n) local k; mul(k^k, k=1..n); end;
A002109 := n -> exp(Zeta(1, -1, n+1)-Zeta(1, -1));
seq(simplify(A002109(n)), n=0..11); # Peter Luschny, Jun 23 2012
MATHEMATICA
Table[Hyperfactorial[n], {n, 0, 11}] (* Zerinvary Lajos, Jul 10 2009 *)
Hyperfactorial[Range[0, 11]] (* Eric W. Weisstein, Jul 14 2017 *)
Join[{1}, FoldList[Times, #^#&/@Range[15]]] (* Harvey P. Dale, Nov 02 2023 *)
PROG
(PARI) a(n)=prod(k=2, n, k^k) \\ Charles R Greathouse IV, Jan 12 2012
(PARI) a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j^j*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
(Haskell)
a002109 n = a002109_list !! n
a002109_list = scanl1 (*) a000312_list -- Reinhard Zumkeller, Jul 07 2012
(Python)
A002109 = [1]
for n in range(1, 10):
A002109.append(A002109[-1]*n**n) # Chai Wah Wu, Sep 03 2014
(Sage)
a = lambda n: prod(falling_factorial(n, k) for k in (1..n))
[a(n) for n in (0..10)] # Peter Luschny, Nov 29 2015
CROSSREFS
Cf. A074962 [Glaisher-Kinkelin constant, also gives an asymptotic approximation for the hyperfactorials].
Cf. A246839 (trailing 0's).
Cf. A261175 (number of digits).
KEYWORD
nonn,easy,nice,changed
STATUS
approved
Numbers k such that (k! + 3)/3 is prime.
+10
57
3, 5, 6, 8, 11, 17, 23, 36, 77, 93, 94, 109, 304, 497, 1330, 1996, 3027, 3053, 4529, 5841, 20556, 26558, 28167
OFFSET
1,1
COMMENTS
a(21) > 20000. The PFGW program has been used to certify all the terms up to a(20), using the "N-1" deterministic test. - Giovanni Resta, Mar 31 2014
MATHEMATICA
Select[Range[0, 1400], PrimeQ[(#!+3)/3] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
PROG
(Magma) [n: n in [0..500] | IsPrime((Factorial(n)+3) div 3)]; // Vincenzo Librandi, Dec 12 2011
(PARI) is(n)=ispseudoprime(n!\3+1) \\ Charles R Greathouse IV, Mar 21 2013
CROSSREFS
Cf. A089131.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).
KEYWORD
nonn
AUTHOR
Cino Hilliard, Dec 05 2003
EXTENSIONS
More terms from Don Reble, Dec 06 2003
1330 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
Typo in Mma program corrected by Vincenzo Librandi, Dec 12 2011
a(16)-a(20) from Giovanni Resta, Mar 31 2014
a(21)-a(23) from Serge Batalov, Feb 17 2015
STATUS
approved
Numbers n such that (n! + 2)/2 is a prime.
+10
56
2, 4, 5, 7, 8, 13, 16, 30, 43, 49, 91, 119, 213, 1380, 1637, 2258, 4647, 9701, 12258
OFFSET
1,1
MATHEMATICA
Select[Range[10^2], PrimeQ[(#!+2)/2] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
PROG
(PARI) \\ x such that (x!+2)/2 is prime
xfactpk(n, k=2) = { for(x=2, n, y = (x!+k)/k; if(isprime(y), print1(x, ", ")) ) }
(Magma) [ n: n in [1..300] | IsPrime((Factorial(n)+2) div 2) ];
CROSSREFS
Cf. A089130.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, May 18 2003
EXTENSIONS
More terms from Don Reble, Dec 08 2003
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
STATUS
approved
Numbers k for which (k!-3)/3 is prime.
+10
56
4, 6, 12, 16, 29, 34, 43, 111, 137, 181, 528, 2685, 39477, 43697
OFFSET
1,1
COMMENTS
Corresponding primes (k!-3)/3 are in A139057.
a(13) > 10000. The PFGW program has been used to certify all the terms up to a(12), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Mar 28 2014
98166 is a member of the sequence but its index is not yet determined. The interval where sieving and tests were not run is [60000,90000]. - Serge Batalov, Feb 24 2015
LINKS
C. Caldwell. The Prime database entry for the prime generated by a(i)=98166.
MATHEMATICA
a = {}; Do[If[PrimeQ[(-3 + n!)/3], AppendTo[a, n]], {n, 1, 1000}]; a
PROG
(PARI) for(n=1, 1000, if(floor(n!/3-1)==n!/3-1, if(ispseudoprime(n!/3-1), print(n)))) \\ Derek Orr, Mar 28 2014
CROSSREFS
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205.
Cf. m*n!-1 is a prime: A076133, A076134, A099350, A099351, A180627-A180631.
Cf. m*n!+1 is a prime: A051915, A076679-A076683, A178488, A180626, A126896.
KEYWORD
nonn,more
AUTHOR
Artur Jasinski, Apr 07 2008
EXTENSIONS
Definition corrected by Derek Orr, Mar 28 2014
a(8)-a(11) from Derek Orr, Mar 28 2014
a(12) from Giovanni Resta, Mar 28 2014
a(13)-a(14) from Serge Batalov, Feb 24 2015
STATUS
approved
Primes of the form n!! - 1.
+10
51
2, 7, 47, 383, 10321919, 51011754393599, 1130138339199322632554990773529330319359999999, 73562883979319395645666688474019139929848516028923903999999999, 4208832729023498248022825567687608993477547383960134557368319999999999
OFFSET
1,1
REFERENCES
G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 158.
LINKS
FORMULA
a(n) = A093173(n-1) for n > 1. - Alexander Adamchuk, Apr 18 2007
a(n) = A006882(A007749(n)) - 1. - Elmo R. Oliveira, Feb 22 2025
EXAMPLE
6!! - 1 = 6*4*2 - 1 = 48 - 1 = 47, which is prime.
8!! - 1 = 8*6*4*2 - 1 = 384 - 1 = 383, which is prime.
MAPLE
SFACT:= proc(n) local i, j, k; for k from 1 by 1 to n do i:=k; j:=k-2; while j >0 do i:=i*j; j:=j-2; od: if isprime(i-1) then print(i-1); fi; od: end: SFACT(100);
MATHEMATICA
lst={}; Do[p=n!!-1; If[PrimeQ[p], AppendTo[lst, p]], {n, 0, 5!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 27 2009 *)
Select[Table[n!!-1, {n, 1, 100}], PrimeQ] (* Vincenzo Librandi, Dec 07 2011 *)
PROG
(PARI) print1(2); for(n=1, 1e3, if(ispseudoprime(t=n!<<n-1), print1(", "t))) \\ Charles R Greathouse IV, Jun 16 2011
CROSSREFS
Cf. A093173 = primes of the form (2^n * n!) - 1.
KEYWORD
nonn,changed
AUTHOR
STATUS
approved
Numbers k for which (9 + k!)/9 is prime.
+10
50
8, 46, 87, 168, 259, 262, 292, 329, 446, 1056, 3562, 11819, 26737
OFFSET
1,1
COMMENTS
No other k exists, for k <= 6000. - Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
The next number in the sequence, if one exists, is greater than 10944. - Robert Price, Mar 16 2010
Borrowing from A139074 another term in this sequence is 26737. There may be others between 10944 and 26737. - Robert Price, Dec 13 2011
There are no other terms for k < 26738. - Robert Price, Feb 10 2012
EXAMPLE
a(11) = 3562 because 3562 is the 11th natural number for which k!/9 + 1 is prime. 3562 is the new term.
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! + 9)/9], AppendTo[a, n]], {n, 1, 500}]; a
PROG
(PARI) for(n=6, 1e4, if(ispseudoprime(n!/9+1), print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
(PFGW) ABC2 $a!/9+1
a: from 6 to 1000 // Jinyuan Wang, Feb 04 2020
CROSSREFS
Cf. A139068 (primes of the form (9 + k!)/9).
Cf. k!/m - 1 is a prime: A002982, A082671, A139056, A139199-A139205.
Cf. (m + k!)/m is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A139071.
KEYWORD
nonn,more
AUTHOR
Artur Jasinski, Apr 09 2008
EXTENSIONS
Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar
a(10) corrected from 1053 to 1056 by Dmitry Kamenetsky, Jul 12 2008
a(11) from Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
a(12)-a(13) from Robert Price, Feb 10 2012
STATUS
approved
Numbers n such that (5+n!)/5 is prime.
+10
26
7, 9, 11, 14, 19, 23, 45, 121, 131, 194, 735, 751, 1316, 1372, 2084, 2562, 5678, 5758, 12533, 24222
OFFSET
1,1
COMMENTS
For primes of the form (5+n!)/5 see A139059.
a(21) > 25000. - Robert Price, Nov 20 2016
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! + 5)/5], AppendTo[a, n]], {n, 1, 751}]; a
PROG
(Magma) [ n: n in [5..734] | IsPrime((Factorial(n)+5) div 5) ];
(PARI) A139058(n) = local(k=(n!+5)\5); if(isprime(k), k, 0);
for(n=5, 800, if(A139058(n)>0, print1(n, ", ")))
CROSSREFS
Cf. A139059.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 07 2008
EXTENSIONS
More terms from Serge Batalov, Feb 18 2015
a(19)-a(20) from Robert Price, Nov 20 2016
STATUS
approved
Numbers n for which (4+n!)/4 is prime.
+10
25
4, 5, 6, 13, 21, 25, 32, 40, 61, 97, 147, 324, 325, 348, 369, 1290, 1342, 3167, 6612, 8176, 10990
OFFSET
1,1
COMMENTS
For primes of the form (4+k!)/4, see A139060.
a(22) > 25000. - Robert Price, Jan 10 2017
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! + 4)/4], AppendTo[a, n]], {n, 1, 500}]; a
Select[Range[500], PrimeQ[(4+#!)/4]&] (* Harvey P. Dale, Mar 24 2011 *)
PROG
(PARI) for(n=4, 1e3, if(ispseudoprime(n!/4+1), print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 07 2008
EXTENSIONS
More terms from Serge Batalov, Feb 18 2015
a(19) - a(21) from Robert Price, Jan 10 2017
STATUS
approved

Search completed in 0.056 seconds