[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a002673 -id:a002673
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (2n)!/2.
(Formerly M4879 N2092)
+10
30
1, 12, 360, 20160, 1814400, 239500800, 43589145600, 10461394944000, 3201186852864000, 1216451004088320000, 562000363888803840000, 310224200866619719680000, 201645730563302817792000000, 152444172305856930250752000000, 132626429906095529318154240000000
OFFSET
1,2
COMMENTS
Right side of the binomial sum n-> sum( (-1)^i * (n-i)^(2*n) * binomial(2*n, i), i=0..n). - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
a(n) is the number of ways to display n distinct flags on n distinct poles and then linearly order all (including any empty) poles. - Geoffrey Critzer, Dec 16 2009
Product of the partition parts of 2n into exactly two parts. - Wesley Ivan Hurt, Jun 03 2013
Let f(x) be a polynomial in x. The expansion (2*sinh(x/2))^2 = x^2 + (1/12)*x^4 + (1/360)*x^6 + ... leads to the second central difference formula f(x+1) - 2*f(x) + f(x-1) = (2*sinh(D/2))^2(f(x)) = D^2(f(x)) + (1/12)*D^4(f(x)) + (1/360)* D^6(f(x)) + ..., where D denotes the differential operator d/dx. - Peter Bala, Oct 03 2019
REFERENCES
A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.33)
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ronald P. Nordgren, Compound Lucas Magic Squares, arXiv:2103.04774 [math.GM], 2021. See Table 2 p. 12.
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
Eric Weisstein's World of Mathematics, Central Difference.
FORMULA
4*sinh(x/2)^2 = Sum_{k>=1} x^(2k)/a(k). - Benoit Cloitre, Dec 08 2002
E.g.f.: (hypergeom([1/2, 1], [], 4*x)-1)/2 (cf. A090438).
a(n) = n*(2n-1)!. - Geoffrey Critzer, Dec 16 2009
a(n) = A010050(n)/2. - Wesley Ivan Hurt, Aug 22 2013
a(n) = Product_{k=0..n-1} (n^2 - k^2). - Stanislav Sykora, Jul 14 2014
Series reversion ( Sum_{n >= 1} x^n/a(n) ) = Sum_{n >= 1} (-1)^n*x^n/b(n-1), where b(n) = A002544(n). - Peter Bala, Apr 18 2017
From Amiram Eldar, Jul 09 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*(cosh(1) - 1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(1 - cos(1)). (End)
EXAMPLE
a(3) = 360, since 2(3) = 6 has exactly 3 partitions into two parts: (5,1), (4,2), (3,3). Multiplying all the parts in the partitions, we get 5! * 3 = 360. - Wesley Ivan Hurt, Jun 03 2013
MAPLE
seq((2*k)!/2, k=1..20); # Wesley Ivan Hurt, Aug 22 2013
MATHEMATICA
Table[n! Pochhammer[n, n], {n, 0, 10}] (* Geoffrey Critzer, Dec 16 2009 *)
Table[(2 n)! / 2, {n, 1, 15}] (* Vincenzo Librandi, Aug 23 2013 *)
PROG
(Magma) [n*Factorial(2*n-1): n in [1..15]]; // Vincenzo Librandi, Aug 23 2013
(PARI) a(n) = (2*n)!/2; \\ Indranil Ghosh, Apr 18 2017
CROSSREFS
a(n) = A090438(n, 2), n >= 1 (first column of (4, 2)-Stirling2 array).
KEYWORD
nonn,easy,changed
STATUS
approved
a(n) = 4^n*(2*n+1)!.
(Formerly M5174 N2246)
+10
16
1, 24, 1920, 322560, 92897280, 40874803200, 25505877196800, 21424936845312000, 23310331287699456000, 31888533201572855808000, 53572735778642397757440000, 108431217215972213061058560000
OFFSET
0,2
COMMENTS
From Sanjar Abrarov, Mar 30 2019: (Start)
There is a formula for numerical integration (see MATLAB Central file ID# 71037):
Integral_{x=0..1} f(x) dx = 2*Sum_{m=1..M} Sum_{n>=0} 1/((2*M)^(2*n + 1)*(2*n + 1)!)*f^(2*n)(x)|_x = (m - 1/2)/M, where the notation f^(2*n)(x)|_x = (m - 1/2)/M is the (2*n)-th derivative of the function f(x) at the points x = (m - 1/2)/M.
When we choose M = 1, then the corresponding coefficients are generated as 2*1/(2^(2*n + 1)*(2*n + 1)!) = 1/(4^n*(2*n + 1)!).
Therefore, this sequence also occurs in the denominator of the numerical integration formula at M = 1. (End)
From Peter Bala, Oct 03 2019: (Start)
Denominators in the expansion of 2*sinh(x/2) = x + x^3/24 + x^5/1920 + x^7/322560 + ....
If f(x) is a polynomial in x then the central difference f(x+1/2) - f(x-1/2) = 2*sinh(D/2)(f(x)) = D(f(x)) + (1/24)*D^3(f(x)) + (1/1920)*D^5(f(x)) + ..., where D denotes the differential operator d/dx. Formulas for higher central differences in terms of powers of the operator D can be obtained from the expansion of powers of the function 2*sinh(x/2). For example, the expansion (2*sinh(x/2))^2 = x^2 + (1/12)*x^4 + (1/360)*x^6 + .. leads to the second central difference formula f(x+1) - 2*f(x) + f(x-1) = D^2(f(x)) + (1/12)*D^4(f(x)) + (1/360)* D^6(f(x)) + .... See A002674. (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. M. Abrarov and B. M. Quine, Array numerical integration by enhanced midpoint rule, MATLAB Central file ID #: 71037.
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables. [Note that there is a mistake in the definition of this sequence on line 2 of page 164.]
Eric Weisstein's World of Mathematics, Central Difference.
FORMULA
a(n) = 16^n * Pochhammer(1,n) * Pochhammer(3/2,n). - Roger L. Bagula, Apr 26 2013
From Amiram Eldar, Apr 09 2022: (Start)
Sum_{n>=0} 1/a(n) = 2*sinh(1/2).
Sum_{n>=0} (-1)^n/a(n) = 2*sin(1/2). (End)
MATHEMATICA
a[n_] := 4^n*(2*n + 1)!; Array[a, 12, 0] (* Amiram Eldar, Apr 09 2022 *)
PROG
(PARI) a(n)=4^n*(2*n+1)!
CROSSREFS
A bisection of A002866 and (apart from initial term) also a bisection of A007346.
Row sums of A225076. - Roger L. Bagula, Apr 27 2013
KEYWORD
nonn,easy,changed
EXTENSIONS
More terms from Michael Somos
STATUS
approved
Denominators of central difference coefficients M_{3}^(2n+1).
(Formerly M4588 N1957)
+10
10
1, 8, 1920, 193536, 154828800, 1167851520, 892705701888000, 1428329123020800, 768472460034048000, 4058540589291090739200, 196433364521688791777280000, 5957759187690780937420800000, 30447485794244997427545243648000000, 341011840895543971188506728857600000
OFFSET
1,2
COMMENTS
From Peter Bala, Oct 03 2019: (Start)
Denominators in the expansion of (2*sinh(x/2))^3 = x^3 + (1/8)*x^5 + (13/1920)*x^7 + (41/193536)*x^9 + ....
Let f(x) be a polynomial in x. The expansion of (2*sinh(x/2))^3 leads to a formula for the third central differences: f(x+3/2) - 3*f(x+1/2) + 3*f(x-1/2) - f(x-3/2) = (2*sinh(D/2))^3(f(x)) = D^3(f(x)) + (1/8)*D^5(f(x)) + (13/1920)* D^7(f(x)) + ..., where D denotes the differential operator d/dx. (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
E. W. Weisstein, Central Difference. From MathWorld--A Wolfram Web Resource.
FORMULA
a(n) = denominator(3! * m(3, 2 * n + 1) / (2 * n + 1)!) where m(k, k) = 1; m(k, q) = 0 for k = 0, k > q, or k + q odd; m(1, q) = 1/2^(q-1) for odd q; m(2, q) = 1 for even q; m(k, q+2) = m(k-2, q) + (k/2)^2 * m(k, q) otherwise. [From Salzer] - Sean A. Irvine, Dec 20 2016
CROSSREFS
Cf. A002673 (for numerators). Cf. A002671, A002674, A002675, A002676, A002677.
KEYWORD
nonn,frac,changed
STATUS
approved
Numerators of coefficients for central differences M_{4}^(2*n).
(Formerly M5035 N2173)
+10
10
1, 1, 1, 17, 31, 1, 5461, 257, 73, 1271, 60787, 241, 22369621, 617093, 49981, 16843009, 5726623061, 7957, 91625968981, 61681, 231927781, 50991843607, 499069107643, 4043309297, 1100586419201, 5664905191661, 1672180312771
OFFSET
2,4
COMMENTS
From Peter Bala, Oct 03 2019: (Start)
Numerators in the expansion of (2*sinh(x/2))^4 = x^4 + (1/6)*x^6 + (1/80)*x^8 + (17/30240)*x^10 + ....
Let f(x) be a polynomial in x. The expansion of (2*sinh(x/2))^4 leads to a formula for the fourth central differences: f(x+2) - 4*f(x+1) + 6*f(x) - 4*f(x-1) + f(x-2) = (2*sinh(D/2))^4(f(x)) = D^4(f(x)) + (1/6)*D^6(f(x)) + (1/80)* D^8(f(x)) + (17/30240)*D^10(f(x)) + ..., where D denotes the differential operator d/dx. (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
E. W. Weisstein, Central Difference. From MathWorld--A Wolfram Web Resource.
MAPLE
gf := (sinh(2*sqrt(x)) - 2*sinh(sqrt(x)))*sqrt(x):
ser := series(gf, x, 40): seq(numer(coeff(ser, x, n)), n=2..28); # Peter Luschny, Oct 05 2019
CROSSREFS
Cf. A002676 and A002677 (two different choices for denominators).
Also equals A002430/A002431.
KEYWORD
nonn,frac,changed
EXTENSIONS
More terms from Sean A. Irvine, Dec 20 2016
STATUS
approved
Denominators of coefficients for central differences M_{3}'^(2*n+1).
(Formerly M3676 N1499)
+10
10
1, 4, 40, 12096, 604800, 760320, 217945728000, 697426329600, 16937496576000, 30964207376793600, 187333454629601280000, 111407096483020800000, 1814811575069725360128000000, 10162944820390462016716800000
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
FORMULA
From Peter Bala, Oct 03 2019: (Start)
a(n) are the denominators in the expansion of (1/2)*(d/dx)(2*sinh(sqrt(x)/2))^4 =
x + (1/4)*x^2 + (1/40)*x^3 + (17/12096)*x^4 + (31/604800)*x^5 + ...
The a(n) also appear as denominators in the difference formula: (1/2)*f(x+2) - f(x+1) + f(x-1) - (1/2)*f(x-2) = D^3(f(x)) + (1/4)*D^5(f(x)) + (1/40)*D^7(f(x)) + (17/12096)*D^9(f(x)) + ..., where D denotes the differential operator d/dx.
(End)
MAPLE
gf := (sinh(2*sqrt(x)) - 2*sinh(sqrt(x)))/sqrt(x): ser := series(gf, x, 20):
seq(denom(coeff(ser, x, n)), n=1..14); # Peter Luschny, Oct 05 2019
CROSSREFS
Numerators are A002675.
KEYWORD
nonn,frac
EXTENSIONS
More terms from Sean A. Irvine, Dec 20 2016
STATUS
approved
Denominators of coefficients for central differences M_{4}^(2*n).
(Formerly M4282 N1789)
+10
6
1, 6, 80, 30240, 1814400, 2661120, 871782912000, 3138418483200, 84687482880000, 170303140572364800, 1124000727777607680000, 724146127139635200000, 12703681025488077520896000000, 76222086152928465125376000000, 1531041037877004667453440000000
OFFSET
2,2
COMMENTS
From Peter Bala, Oct 03 2019: (Start)
Denominators in the expansion of (2*sinh(x/2))^4 = x^4 + (1/6)*x^6 + (1/80)*x^8 + (17/30240)*x^10 + ....
Let f(x) be a polynomial in x. The expansion of (2*sinh(x/2))^4 leads to a formula for the fourth central differences: f(x+2) - 4*f(x+1) + 6*f(x) - 4*f(x-1) + f(x-2) = (2*sinh(D/2))^4(f(x)) = D^4(f(x)) + (1/6)*D^6(f(x)) + (1/80)*D^8(f(x)) + (17/30240)*D^10(f(x)) + ..., where D denotes the differential operator d/dx. (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
E. W. Weisstein, Central Difference. From MathWorld--A Wolfram Web Resource.
FORMULA
a(n) = denominator(4! * m(4, 2 * n) / (2 * n)!) where m(k, q) is defined in A002672. - Sean A. Irvine, Dec 20 2016
MAPLE
gf := 6 - 8*cosh(sqrt(x)) + 2*cosh(2*sqrt(x)): ser := series(gf, x, 40):
seq(denom(coeff(ser, x, n)), n=2..16); # Peter Luschny, Oct 05 2019
CROSSREFS
Cf. A002675 (numerators). Cf. A002671, A002672, A002673, A002674, A002677.
KEYWORD
nonn,frac,changed
EXTENSIONS
More terms from Sean A. Irvine, Dec 20 2016
STATUS
approved
Numerators of central difference coefficients M_{5}^(2n+1).
+10
1
1, 5, 23, 227, 631
OFFSET
2,2
COMMENTS
Salzer's table extends to M_{5}^(29).
LINKS
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
CROSSREFS
Cf. 1/A002671, A002673/A002672, A323994 (denominators).
KEYWORD
nonn,frac,more
AUTHOR
N. J. A. Sloane, Feb 14 2019
STATUS
approved
Denominators of central difference coefficients M_{5}^(2n+1).
+10
1
1, 24, 1152, 193536, 13271040
OFFSET
2,2
COMMENTS
Salzer's table extends to M_{5}^(29).
LINKS
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
CROSSREFS
Cf. 1/A002671, A002673/A002672, A323993 (numerators).
KEYWORD
nonn,frac,more
AUTHOR
N. J. A. Sloane, Feb 14 2019
STATUS
approved

Search completed in 0.009 seconds