[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a007520 -id:a007520
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of 8k+3 primes (A007520) in range [2^n,2^(n+1)].
+20
3
1, 0, 1, 1, 2, 3, 7, 10, 20, 35, 66, 113, 218, 412, 746, 1460, 2672, 5104, 9651, 18375, 35105, 67165, 128410, 246453, 473535, 911489, 1756670, 3390856, 6552449, 12673142, 24546849, 47583904, 92330578, 179317889, 348548185, 678029708, 1319939685, 2571409639
OFFSET
1,5
FORMULA
a(n) = A095014(n) - A095011(n) = A095008(n) - A095012(n).
KEYWORD
nonn
AUTHOR
Antti Karttunen and Labos Elemer, Jun 01 2004
EXTENSIONS
a(34)-a(38) from Amiram Eldar, Jun 12 2024
STATUS
approved
Let p = n-th prime == 3 mod 8 (A007520); a(n) = smallest prime q such that p is not a square mod q.
+20
3
3, 3, 7, 5, 3, 5, 3, 3, 3, 7, 5, 3, 11, 3, 3, 5, 5, 13, 3, 13, 3, 3, 3, 3, 13, 5, 5, 3, 11, 3, 7, 5, 3, 3, 7, 11, 5, 7, 3, 7, 5, 5, 3, 3, 3, 11, 3, 5, 3, 19, 3, 3, 3, 7, 3, 3, 3, 7, 5, 3, 3, 7, 3, 11, 3, 5, 3, 7, 5, 5, 3, 3, 5, 3, 3, 3, 5, 3, 17, 3, 5, 3, 7, 13, 5, 3, 11, 3, 3, 5, 7, 3, 3, 5, 3, 7, 3, 7, 5, 3
OFFSET
1,1
MATHEMATICA
f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 3 &]
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 24 2004
STATUS
approved
Smallest prime p == 3 mod 8 (A007520) and p > prime(n+2) such that p is a quadratic residue mod the first n odd primes 3, 5, 7, 11, ..., prime(n+1), and p is a quadratic non-residue mod prime(n+2).
+20
2
11, 43, 19, 211, 331, 2011, 1171, 7459, 10651, 18379, 90931, 257371, 399499, 1234531, 6938779, 3574411, 14669251, 39803611, 102808099, 288710899, 322503091, 465390979, 1582819291, 2410622971, 505313251
OFFSET
0,1
COMMENTS
Same as smallest prime p == 3 mod 8 with the property that the Legendre symbol (p|q) = 1 for the first n odd primes q = prime(k+1), k = 1, 2, ..., n, and (p|q) = -1 for q = prime(n+2).
MATHEMATICA
f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; t = Table[0, {50}]; Do[p = Prime[n]; If[Mod[p, 8] == 3, a = f[p]; If[ t[[ PrimePi[a]]] == 0, t[[ PrimePi[a]]] = p; Print[ PrimePi[a], " = ", p]]], {n, 10^9}]; t
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 24 2004
EXTENSIONS
Better name from Jonathan Sondow, Mar 07 2013
STATUS
approved
a(n) = (A007520(n)-1)/2.
+20
2
1, 5, 9, 21, 29, 33, 41, 53, 65, 69, 81, 89, 105, 113, 125, 141, 153, 165, 173, 189, 209, 221, 233, 245, 249, 261, 273, 281, 285, 293, 309, 321, 329, 341, 345, 369, 393, 405, 413, 429, 441, 453, 473, 485, 509, 525, 545, 561, 581, 585, 593
OFFSET
1,2
COMMENTS
a(n) = A055034(A007520(n)), n >= 1. This is the degree of the minimal polynomial C(A007520(n) ,x) of 2*cos(Pi/A007520(n)) (see A187360). a(n) is of course congruent 1 (mod 4). - Wolfdieter Lang, Oct 24 2013
FORMULA
a(n) = A186296(n)-1.
CROSSREFS
KEYWORD
nonn
AUTHOR
Marco Matosic, Feb 17 2011
STATUS
approved
Alternate terms of A007519, A007520, A007521, A007522.
+20
1
17, 3, 5, 7, 41, 11, 13, 23, 73, 19, 29, 31, 89, 43, 37, 47, 97, 59, 53, 71, 113, 67, 61, 79, 137, 83, 101, 103, 193, 107, 109, 127, 233, 131, 149, 151, 241, 139, 157, 167, 257, 163, 173, 191, 281, 179, 181, 199, 313, 211, 197, 223, 337, 227, 229, 239, 353, 251, 269
OFFSET
1,1
COMMENTS
Or, read the following table by columns:
17,41,73,89,97,113,137,193,233,241,257,281,313,337,353,401,409,... (primes = = 1 mod 8)
3,11,19,43,59,67,83,107,131,139,163,179,211,227,251,283,307,331,... (primes == 3 mod 8)
5,13,29,37,53,61,101,109,149,157,173,181,197,229,269,277,293,317,... (primes == 5 mod 8)
7,23,31,47,71,79,103,127,151,167,191,199,223,239,263,271,311,359,... (primes == 7 mod 8)
EXAMPLE
The first four primes congruent to (1,3,5,7) mod 8 are 17,3,5,7, hence a(1..4)=17,3,5,7;
The next four primes congruent to (1,3,5,7) mod 8 are 41,11,13,23, hence a(5..8)=41,11,13,23, etc.
MATHEMATICA
s[i_]:=(c=0; a=2*i-1; Reap[Do[If[PrimeQ[a], c++; Sow[a]]; If[c>99, Break[], a = a+8], {10^8}]][[2, 1]]); Flatten[Transpose[Table[s[i], {i, 4}]]]; (* Zak Seidov, Jan 16 2013 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Zak Seidov and N. J. A. Sloane, Feb 23 2009
STATUS
approved
( A007520(n)+1 )/2.
+20
1
2, 6, 10, 22, 30, 34, 42, 54, 66, 70, 82, 90, 106, 114, 126, 142, 154, 166, 174, 190, 210, 222, 234, 246, 250, 262, 274, 282, 286, 294, 310, 322, 330, 342, 346, 370, 394, 406, 414, 430, 442, 454, 474, 486, 510, 526, 546, 562, 582, 586, 594
OFFSET
1,1
FORMULA
a(n) = A186297(n)+1.
KEYWORD
nonn
AUTHOR
Marco Matosic, Feb 17 2011
STATUS
approved
+20
0
1, 9, 17, 41, 57, 65, 81, 105, 129, 137, 161, 177, 209, 225, 249, 281, 305, 329, 345, 377, 417, 441, 465, 489, 497, 521, 545, 561, 569, 585, 617, 641, 657, 681, 689, 737, 785, 809, 825, 857, 881, 905, 945, 969, 1017, 1049, 1089, 1121, 1161, 1169, 1185
OFFSET
1,2
PROG
(PARI) isok(n) = isprime(n+2) && (n % 8 == 1) \\ Michel Marcus, Jul 16 2013
KEYWORD
nonn
AUTHOR
Marco Matosic, Feb 17 2011
STATUS
approved
Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
+10
575
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
OFFSET
1,1
COMMENTS
Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100<d<0, abs(b)<=a<=c and gcd(a,b,c)=1. When b is not zero, then there are two cases to consider: (1) nonnegative x and y, and (2) x and y any integers. These restrictions yield 203 sequences of prime numbers, which are organized by discriminant below.
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.
REFERENCES
David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.
LINKS
Zak Seidov and N. J. A. Sloane, Table of n, a(n) for n = 1..10000 (The first 1225 terms were found by Zak Seidov)
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p] && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
QuadPrimes2[1, 1, 2, 1000]
(This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
PROG
(PARI) list(lim)=my(q=Qfb(1, 1, 2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016
CROSSREFS
Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 09 2005, Apr 28 2008
EXTENSIONS
Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014
STATUS
approved
Primes of the form 6k-1.
(Formerly M3809)
+10
128
5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
OFFSET
1,1
COMMENTS
For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
F. S. Carey, On some cases of the Solutions of the Congruence z^p^(n-1)=1, mod p, Proceedings of the London Mathematical Society, Volume s1-33, Issue 1, November 1900, Pages 294-312.
Amelia Carolina Sparavigna, The Pentagonal Numbers and their Link to an Integer Sequence which contains the Primes of Form 6n-1, Politecnico di Torino (Italy, 2021).
Amelia Carolina Sparavigna, Binary operations inspired by generalized entropies applied to figurate numbers, Politecnico di Torino (Italy, 2021).
FORMULA
A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021
MAPLE
select(isprime, [seq(6*n-1, n=1..100)]); # Muniru A Asiru, May 19 2018
MATHEMATICA
Select[6 Range[100]-1, PrimeQ] (* Harvey P. Dale, Feb 14 2011 *)
PROG
(PARI) forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
(Haskell)
a007528 n = a007528_list !! (n-1)
a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
-- Reinhard Zumkeller, Jul 13 2012
(GAP) Filtered(List([1..100], n->6*n-1), IsPrime); # Muniru A Asiru, May 19 2018
CROSSREFS
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).
KEYWORD
nonn,easy
STATUS
approved
Composite numbers k congruent to 5 (mod 8) such that 2^((k-1)/2) mod k = k-1.
+10
22
3277, 29341, 49141, 80581, 88357, 104653, 196093, 314821, 458989, 489997, 800605, 838861, 873181, 1004653, 1251949, 1373653, 1509709, 1678541, 1811573, 1987021, 2269093, 2284453, 2387797, 2746477, 2909197, 3400013, 3429037, 3539101, 3605429, 4360621, 4502485, 5590621, 5599765
OFFSET
1,1
COMMENTS
This sequence contains the n mod 8 = 5 pseudoprimes to the following modified Fermat primality criterion:
Conjecture 1: if p is an odd prime congruent to {3,5} (mod 8) then 2^((p-1)/2) mod p = p-1.
This conjecture has been tested to 10^8.
This criterion produces far fewer pseudoprimes than the 2^(n-1) mod n = 1 test and thus has a higher probability of success. The number of pseudoprimes for the two tests up to 10^k are:
10^5 5 26 19.23%
10^6 13 78 16.66%
10^7 40 228 17.54%
There are 40 terms < 10^7. If an additional constraint 3^(n-1) mod n = 1 and 5^(n-1) mod n = 1 is added, only 4 terms remain: (29341, 314821, 873181, 9863461).
This sequence appears to be a subset of A175865, A001262, A047713, A020230.
Number of terms below 10^k for k = 5..15: 5, 13, 40, 132, 369, 975, 2534, 6592, 17403, 45801, 122473. The corresponding numbers for 2^(n-1) mod n = 1: 26, 78, 228, 637, 1718, 4505, 11645, 29902, 76587, 197455, 513601. - Jens Kruse Andersen, Jul 13 2014
Also composite numbers 2n+1 with n even such that 2n+1 | 2^n+1. - Hilko Koning, Jan 27 2022
Conjecture 1 is true. With p = 2k+1 then 2^k mod (2k+1) == 2k. So 2k+1 | 2k-2^k. Prime numbers 2k+1 == +-3 (mod 8) are the prime numbers such that 2k+1 | 2^k+1 (Comments A007520). A reflection across the x-axis and +1 translation across the y-axis of the graph (2k-2^k) / (2k+1) gives the graph (2^k+1) / (2k+1). So the k values of both 2k+1 | 2k-2^k and 2k+1 | 2^k+1 are identical. - Hilko Koning, Feb 04 2022
LINKS
MAPLE
for n from 5 to 10^7 by 8 do if 2^((n-1)/2) mod n = n-1 and not isprime(n) then print(n) fi od;
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary Detlefs, Jul 02 2014
EXTENSIONS
a(18) corrected by Jens Kruse Andersen, Jul 13 2014
STATUS
approved

Search completed in 0.021 seconds