[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a007405 -id:a007405
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle of B-analogs of Stirling numbers of the second kind.
+10
34
1, 1, 1, 1, 4, 1, 1, 13, 9, 1, 1, 40, 58, 16, 1, 1, 121, 330, 170, 25, 1, 1, 364, 1771, 1520, 395, 36, 1, 1, 1093, 9219, 12411, 5075, 791, 49, 1, 1, 3280, 47188, 96096, 58086, 13776, 1428, 64, 1, 1, 9841, 239220, 719860, 618870, 209622, 32340, 2388, 81, 1, 1
OFFSET
0,5
COMMENTS
Let M be an infinite lower triangular bidiagonal matrix with (1,3,5,7,...) in the main diagonal and (1,1,1,...) in the subdiagonal. n-th row = M^n * [1,0,0,0,...]. - Gary W. Adamson, Apr 13 2009
From Peter Bala, Aug 08 2011: (Start)
A type B_n set partition is a partition P of the set {1, 2, ..., n, -1, -2, ..., -n} such that for any block B of P, -B is also a block of P, and there is at most one block, called a zero-block, satisfying B = -B. We call (B, -B) a block pair of P if B is not a zero-block. Then T(n,k) is the number of type B_n set partitions with k block pairs. See [Wang].
For example, T(2,1) = 4 since the B_2 set partitions with 1 block pair are {1,2}{-1,-2}, {1,-2}{-1,2}, {1,-1}{2}{-2} and {2,-2}{1}{-1} (the last two partitions contain a zero block).
(End)
Exponential Riordan array [exp(x), (1/2)*(exp(2*x) - 1)]. Triangle of connection constants for expressing the monomial polynomials x^n as a linear combination of the basis polynomials (x-1)*(x-3)*...*(x-(2*k-1)) of A039757. An example is given below. Inverse array is A039757. Equals matrix product A008277 * A122848. - Peter Bala, Jun 23 2014
T(n, k) also gives the (dimensionless) volume of the multichoose(k+1, n-k) = binomial(n, k) polytopes of dimension n-k with side lengths from the set {1, 3, ..., 1+2*k}. See the column g.f.s and the complete homogeneous symmetric function formula for T(n, k) below. - Wolfdieter Lang, May 26 2017
T(n, k) is the number of k-dimensional subspaces (i.e., sets of fixed points like rotation axes and symmetry planes) of the n-cube. See "Sets of fixed points..." in LINKS section. - Tilman Piesk, Oct 26 2019
LINKS
V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
Alnour Altoum, Hasan Arslan, and Mariam Zaarour, Cauchy numbers in type B, arXiv:2312.14652 [math.CO], 2023.
Eli Bagno, Riccardo Biagioli and David Garber, Some identities involving second kind Stirling numbers of types B and D, arXiv:1901.07830 [math.CO], 2019.
Sandrine Dasse-Hartaut and Pawel Hitczenko, Greek letters in random staircase tableaux arXiv:1202.3092v1 [math.CO], 2012.
Thomas Godland and Zakhar Kabluchko, Projections and angle sums of permutohedra and other polytopes, arXiv:2009.04186 [math.MG], 2020.
Thomas Godland and Zakhar Kabluchko, Projections and Angle Sums of Belt Polytopes and Permutohedra, Res. Math. (2023) Vol. 78, Art. No. 140.
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See pp. 8-9.
L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207v5 [math.CO], 2005-2006.
Shi-Mei Ma, T. Mansour, and D. Callan, Some combinatorial arrays related to the Lotka-Volterra system, arXiv:1404.0731 [math.CO], 2014.
E. Munarini, Characteristic, admittance and matching polynomials of an antiregular graph, Appl. Anal. Discrete Math 3 (1) (2009) 157-176.
Tillmann Nett, Nadine Nett and Andreas Glöckner, Bayesian Analysis of Processed Information in Decision Making Experiments, FernUniversität (Hagen, Germany), University of Cologne (Germany, 2019).
T. Piesk, Sets of fixed points of permutations of the n-cube: n = 3 and 4.
Bruce E. Sagan and Joshua P. Swanson, q-Stirling numbers in type B, arXiv:2205.14078 [math.CO], 2022.
R. Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
FORMULA
E.g.f. row polynomials: exp(x + y/2 * (exp(2*x) - 1)).
T(n,k) = T(n-1,k-1) + (2*k+1)*T(n-1,k) with T(0,k) = 1 if k=0 and 0 otherwise. Sum_{k=0..n} T(n,k) = A007405(n). - R. J. Mathar, Oct 30 2009; corrected by Joshua Swanson, Feb 14 2019
T(n,k) = (1/(2^k*k!)) * Sum_{j=0..k} (-1)^(k-j)*C(k,j)*(2*j+1)^n.
T(n,k) = (1/(2^k*k!)) * A145901(n,k). - Peter Bala
The row polynomials R(n,x) satisfy the Dobinski-type identity:
R(n,x) = exp(-x/2)*Sum_{k >= 0} (2*k+1)^n*(x/2)^k/k!, as well as the recurrence equation R(n+1,x) = (1+x)*R(n,x)+2*x*R'(n,x). The polynomial R(n,x) has all real zeros (apply [Liu et al., Theorem 1.1] with f(x) = R(n,x) and g(x) = R'(n,x)). The polynomials R(n,2*x) are the row polynomials of A154537. - Peter Bala, Oct 28 2011
Let f(x) = exp((1/2)*exp(2*x)+x). Then the row polynomials R(n,x) are given by R(n,exp(2*x)) = (1/f(x))*(d/dx)^n(f(x)). Similar formulas hold for A008277, A105794, A111577, A143494 and A154537. - Peter Bala, Mar 01 2012
From Peter Bala, Jul 20 2012: (Start)
The o.g.f. for the n-th diagonal (with interpolated zeros) is the rational function D^n(x), where D is the operator x/(1-x^2)*d/dx. For example, D^3(x) = x*(1+8*x^2+3*x^4)/(1-x^2)^5 = x + 13*x^3 + 58*x^5 + 170*x^7 + ... . See A214406 for further details.
An alternative formula for the o.g.f. of the n-th diagonal is exp(-x/2)*(Sum_{k >= 0} (2*k+1)^(k+n-1)*(x/2*exp(-x))^k/k!).
(End)
From Tom Copeland, Dec 31 2015: (Start)
T(n,m) = Sum_{i=0..n-m} 2^(n-m-i)*binomial(n,i)*St2(n-i,m), where St2(n,k) are the Stirling numbers of the second kind, A048993 (also A008277). See p. 755 of Dolgachev and Lunts.
The relation of this entry's e.g.f. above to that of the Bell polynomials, Bell_n(y), of A048993 establishes this formula from a binomial transform of the normalized Bell polynomials, NB_n(y) = 2^n Bell_n(y/2); that is, e^x exp[(y/2)(e^(2x)-1)] = e^x exp[x*2*Bell.(y/2)] = exp[x(1+NB.(y))] = exp(x*P.(y)), so the row polynomials of this entry are given by P_n(y) = [1+NB.(y)]^n = Sum_{k=0..n} C(n,k) NB_k(y) = Sum_{k=0..n} 2^k C(n,k) Bell_k(y/2).
The umbral compositional inverses of the Bell polynomials are the falling factorials Fct_n(y) = y! / (y-n)!; i.e., Bell_n(Fct.(y)) = y^n = Fct_n(Bell.(y)). Since P_n(y) = [1+2Bell.(y/2)]^n, the umbral inverses are determined by [1 + 2 Bell.[ 2 Fct.[(y-1)/2] / 2 ] ]^n = [1 + 2 Bell.[ Fct.[(y-1)/2] ] ]^n = [1+y-1]^n = y^n. Therefore, the umbral inverse sequence of this entry's row polynomials is the sequence IP_n( y) = 2^n Fct_n[(y-1)/2] = (y-1)(y-3) .. (y-2n+1) with IP_0(y) = 1 and, from the binomial theorem, with e.g.f. exp[x IP.(y)]= exp[ x 2Fct.[(y-1)/2] ] = (1+2x)^[(y-1)/2] = exp[ [(y-1)/2] log(1+2x) ].
(End)
Let B(n,k) = T(n,k)*((2*k)!)/(2^k*k!) and P(n,x) = Sum_{k=0..n} B(n,k)*x^(2*k+1). Then (1) P(n+1,x) = (x+x^3)*P'(n,x) for n >= 0, and (2) Sum_{n>=0} B(n,k)/(n!)*t^n = binomial(2*k,k)*exp(t)*(exp(2*t)-1)^k/4^k for k >= 0, and (3) Sum_{n>=0} t^n* P(n,x)/(n!) = x*exp(t)/sqrt(1+x^2-x^2*exp(2*t)). - Werner Schulte, Dec 12 2016
From Wolfdieter Lang, May 26 2017: (Start)
G.f. column k: x^k/Product_{j=0..k} (1 - (1+2*j)*x), k >= 0.
T(n, k) = h^{(k+1)}_{n-k}, the complete homogeneous symmetric function of degree n-k of the k+1 symbols a_j = 1 + 2*j, j = 0, 1, ..., k. (End)
With p(n, x) = Sum_{k=0..n} A001147(k) * T(n, k) * x^k for n >= 0 holds:
(1) Sum_{i=0..n} p(i, x)*p(n-i, x) = 2^n*(Sum_{k=0..n} A028246(n+1, k+1)*x^k);
(2) p(n, -1/2) = (n!) * ([t^n] sqrt(2 / (1 + exp(-2*t)))). - Werner Schulte, Feb 16 2024
EXAMPLE
Triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: 1 4 1
3: 1 13 9 1
4: 1 40 58 16 1
5: 1 121 330 170 25 1
6: 1 364 1771 1520 395 36 1
7: 1 1093 9219 12411 5075 791 49 1
8: 1 3280 47188 96096 58086 13776 1428 64 1
9: 1 9841 239220 719860 618870 209622 32340 2388 81 1
10: 1 29524 1205941 5278240 6289690 2924712 630042 68160 3765 100 1
... reformatted and extended by Wolfdieter Lang, May 26 2017
The sequence of row polynomials of A214406 begins [1, 1+x, 1+8*x+3*x^2, ...]. The o.g.f.'s for the diagonals of this triangle thus begin
1/(1-x) = 1 + x + x^2 + x^3 + ...
(1+x)/(1-x)^3 = 1 + 4*x + 9*x^2 + 16*x^3 + ...
(1+8*x+3*x^2)/(1-x)^5 = 1 + 13*x + 58*x^2 + 170*x^3 + ... . - Peter Bala, Jul 20 2012
Connection constants: x^3 = 1 + 13*(x-1) + 9*(x-1)*(x-3) + (x-1)*(x-3)*(x-5). Hence row 3 = [1,13,9,1]. - Peter Bala, Jun 23 2014
Complete homogeneous symmetric functions: T(3, 1) = h^{(2)}_2 = 1^2 + 3^2 + 1^1*3^1 = 13. The three 2D polytopes are two squares and a rectangle. T(3, 2) = h^{(3)}_1 = 1^1 + 3^1 + 5^1 = 9. The 1D polytopes are three lines. - Wolfdieter Lang, May 26 2017
T(4, 3) = 16 is the number of 3-dimensional subspaces (mirror hyperplanes) of the 4-cube. (These are 4 cubes and 12 cuboids.) See "Sets of fixed points..." in LINKS section. - Tilman Piesk, Oct 26 2019
MAPLE
A039755 := proc(n, k) if k < 0 or k > n then 0 ; elif n <= 1 then 1; else procname(n-1, k-1)+(2*k+1)*procname(n-1, k) ; end if; end proc:
seq(seq(A039755(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Oct 30 2009
MATHEMATICA
t[n_, k_] = Sum[(-1)^(k-j)*(2j+1)^n*Binomial[k, j], {j, 0, k}]/(2^k*k!); Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]][[1 ;; 56]]
(* Jean-François Alcover, Jun 09 2011, after Peter Bala *)
PROG
(PARI) T(n, k)=if(k<0 || k>n, 0, n!*polcoeff(polcoeff(exp(x+y/2*(exp(2*x+x*O(x^n))-1)), n), k))
(Magma) [[(&+[(-1)^(k-j)*(2*j+1)^n*Binomial(k, j): j in [0..k]])/( 2^k*Factorial(k)): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 14 2019
(Sage) [[sum((-1)^(k-j)*(2*j+1)^n*binomial(k, j) for j in (0..k))/( 2^k*factorial(k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 14 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ruedi Suter (suter(AT)math.ethz.ch)
STATUS
approved
Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=3.
+10
17
1, 2, 7, 35, 214, 1523, 12349, 112052, 1120849, 12219767, 143942992, 1819256321, 24526654381, 350974470746, 5308470041299, 84554039118383, 1413794176669942, 24745966692370607, 452277149756692105, 8612255652371171012, 170517319084490074405
OFFSET
0,2
COMMENTS
Named after the American mathematician Thomas Allan Dowling (b. 1941). - Amiram Eldar, Jun 06 2021
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math., Vol. 159, No. 1-3 (1996), pp. 13-33.
Thomas A. Dowling, A class of geometric lattices based on finite groups, Journal of Combinatorial Theory, Series B, Vol. 14, No. 1 (1973), pp. 61-86.
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
Mahid M. Mangontarum and Jacob Katriel, On q-Boson Operators and q-Analogues of the r-Whitney and r-Dowling Numbers, J. Int. Seq., Vol. 18 (2015), Article 15.9.8.
FORMULA
E.g.f.: exp(x + (exp(3*x) - 1)/3).
G.f.: 1/(1-x*Q(0)), where Q(k) = 1 + x/(1 - x + 3*x*(k+1)/(x - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
a(n) = exp(-1/3) * Sum_{k>=0} (3*k + 1)^n / (3^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 3^(n + 1/3) * n^(n + 1/3) * exp(n/LambertW(3*n) - n - 1/3) / (sqrt(1 + LambertW(3*n)) * LambertW(3*n)^(n + 1/3)). - Vaclav Kotesovec, Jun 26 2022
MAPLE
seq(coeff(series(n!*exp(z+(1/3)*exp(3*z)-(1/3)), z, n+1), z, n), n=0..30); # Muniru A Asiru, Feb 19 2019
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[x+Exp[3x]/3-1/3], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jan 04 2019 *)
Table[Sum[Binomial[n, k] * 3^k * BellB[k, 1/3], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) my(x = 'x + O('x^30)); Vec(serlaplace(exp(x + exp(3*x)/3 - 1/3))) \\ Michel Marcus, Feb 09 2018
(Magma) m:=30; c:=3; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x+(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 20 2019
(Sage)
b=3;
def A003575_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(x +(exp(b*x)-1)/b) ).egf_to_ogf().list()
A003575_list(30) # G. C. Greubel, Feb 20 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), this sequence (b=3), A003576 (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), A003581 (b=9), A003582 (b=10).
KEYWORD
nonn
EXTENSIONS
Name clarified by G. C. Greubel, Feb 20 2019
STATUS
approved
Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=4.
+10
17
1, 2, 8, 48, 352, 3008, 29440, 324096, 3947520, 52541440, 757260288, 11733385216, 194272854016, 3419584921600, 63707979972608, 1251489089060864, 25836869372608512, 558946705406427136, 12638569755079344128, 298003073694026432512, 7312035980392431353856
OFFSET
0,2
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
FORMULA
E.g.f.: exp(z + (exp(4*z) - 1)/4).
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(2*k+1) - 2*x^2*(2*k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 26 2013
a(n) = exp(-1/4) * Sum_{k>=0} (4*k + 1)^n / (4^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 4^(n + 1/4) * n^(n + 1/4) * exp(n/LambertW(4*n) - n - 1/4) / (sqrt(1 + LambertW(4*n)) * LambertW(4*n)^(n + 1/4)). - Vaclav Kotesovec, Jun 26 2022
MAPLE
seq(coeff(series(factorial(n)*exp(z+(1/4)*exp(4*z)-(1/4)), z, n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 22 2019
MATHEMATICA
With[{m=20, b=4}, CoefficientList[Series[Exp[x+(Exp[b*x]-1)/b], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 22 2019 *)
Table[Sum[Binomial[n, k] * 4^k * BellB[k, 1/4], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) my(x='x+O('x^20)); b=4; Vec(serlaplace(exp(x+(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 22 2019
(Magma) m:=20; c:=4; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x+(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 22 2019
(Sage) m = 20; b=4; T = taylor(exp(x+(exp(b*x)-1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 22 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), this sequence (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), A003581 (b=9), A003582 (b=10).
KEYWORD
nonn
STATUS
approved
Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=5.
+10
15
1, 2, 9, 63, 536, 5307, 60389, 775988, 11062391, 172638727, 2921519374, 53221709973, 1037320865141, 21517178350762, 472862758184789, 10966587174511443, 267502464814857936, 6842498829509972687, 183057455239626138009, 5110016898453125496548
OFFSET
0,2
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
FORMULA
E.g.f.: exp(x + (exp(5*x) - 1)/5).
a(n) = exp(-1/5) * Sum_{k>=0} (5*k + 1)^n / (5^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 5^(n + 1/5) * n^(n + 1/5) * exp(n/LambertW(5*n) - n - 1/5) / (sqrt(1 + LambertW(5*n)) * LambertW(5*n)^(n + 1/5)). - Vaclav Kotesovec, Jun 26 2022
MATHEMATICA
With[{m=20, b=5}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 5^k * BellB[k, 1/5], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) my(x='x+O('x^20)); b=5; Vec(serlaplace(exp(x +(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 24 2019
(Magma) m:=20; c:=5; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
(Sage) m = 20; b=5; T = taylor(exp(x + (exp(b*x) -1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
(GAP) b:=5;; a:=[1, 2];; for n in [3..20] do a[n]:=2*a[n-1]+Sum([0..n-3], i->Binomial(n-2, i)*b^(n-2-i)*a[i+1]); od; Print(a); # Muniru A Asiru, Apr 10 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), A003576 (b=4), this sequence (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), A003581 (b=9), A003582 (b=10).
KEYWORD
nonn
EXTENSIONS
Name clarified by Muniru A Asiru, Feb 24 2019
STATUS
approved
Dowling numbers: e.g.f. exp(x + (exp(b*x) - 1)/b), with b=6.
+10
15
1, 2, 10, 80, 772, 8648, 111592, 1631360, 26518672, 472528160, 9139219360, 190461416192, 4250569655872, 101040920561792, 2546488866632320, 67772341398044672, 1898177372174512384, 55780954727160472064, 1715291443214323558912, 55062161002484359565312
OFFSET
0,2
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
FORMULA
E.g.f.: exp(x + (exp(6*x) - 1)/6).
a(n) = exp(-1/6) * Sum_{k>=0} (6*k + 1)^n / (6^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 6^(n + 1/6) * n^(n + 1/6) * exp(n/LambertW(6*n) - n - 1/6) / (sqrt(1 + LambertW(6*n)) * LambertW(6*n)^(n + 1/6)). - Vaclav Kotesovec, Jun 26 2022
MAPLE
seq(coeff(series(factorial(n)*exp(z+(1/6)*exp(6*z)-(1/6)), z, n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 23 2019
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[x+Exp[6x]/6-1/6], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jun 12 2017 *)
Table[Sum[Binomial[n, k] * 6^k * BellB[k, 1/6], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) my(x='x+O('x^20)); b=6; Vec(serlaplace(exp(x +(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 24 2019
(Magma) m:=20; c:=6; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
(Sage) m = 20; b=6; T = taylor(exp(x + (exp(b*x) -1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), A003576 (b=4), A003577 (b=5), this sequence (b=6), A003579 (b=7), A003580 (b=8), A003581 (b=9), A003582 (b=10).
KEYWORD
nonn
STATUS
approved
Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=8.
+10
15
1, 2, 12, 120, 1424, 19488, 307904, 5539712, 111259904, 2454487552, 58847153152, 1522019629056, 42209521995776, 1248370355347456, 39186678731423744, 1300179383923212288, 45436201241711542272, 1667242078056889843712, 64063345344029286727680
OFFSET
0,2
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
Prudence Djagba and Jan Hązła, Combinatorics of subgroups of Beidleman near-vector spaces, arXiv:2306.16421 [math.RA], 2023.
FORMULA
E.g.f.: exp(x + (exp(8*x) - 1)/8).
a(n) = exp(-1/8) * Sum_{k>=0} (8*k + 1)^n / (8^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 8^(n + 1/8) * n^(n + 1/8) * exp(n/LambertW(8*n) - n - 1/8) / (sqrt(1 + LambertW(8*n)) * LambertW(8*n)^(n + 1/8)). - Vaclav Kotesovec, Jun 26 2022
MAPLE
seq(coeff(series(factorial(n)*exp(z+(1/8)*exp(8*z)-(1/8)), z, n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 24 2019
MATHEMATICA
With[{m=20, b=8}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 8^k * BellB[k, 1/8], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) my(x='x+O('x^20)); b=8; Vec(serlaplace(exp(x +(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 24 2019
(Magma) m:=20; c:=8; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
(Sage) m = 20; b=8; T = taylor(exp(x + (exp(b*x) -1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), A003576 (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), this sequence (b=8), A003581 (b=9), A003582 (b=10).
KEYWORD
nonn
EXTENSIONS
Name clarified by Muniru A Asiru, Feb 24 2019
STATUS
approved
Dowling numbers: e.g.f. exp(x + (exp(b*x) - 1)/b), with b=7.
+10
13
1, 2, 11, 99, 1066, 13283, 190933, 3117900, 56729565, 1132679479, 24564972756, 574431351673, 14394977015245, 384489778509034, 10894501505088695, 326149933663962479, 10280153573323314858
OFFSET
0,2
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
FORMULA
E.g.f.: exp(x + (exp(7*x) - 1)/7).
a(n) = exp(-1/7) * Sum_{k>=0} (7*k + 1)^n / (7^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 7^(n + 1/7) * n^(n + 1/7) * exp(n/LambertW(7*n) - n - 1/7) / (sqrt(1 + LambertW(7*n)) * LambertW(7*n)^(n + 1/7)). - Vaclav Kotesovec, Jun 26 2022
MATHEMATICA
With[{m=20, b=7}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 7^k * BellB[k, 1/7], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) Vec(serlaplace( exp(z + 1/7 * exp(7 * z) - 1/7) ) ) \\ Joerg Arndt, Feb 24 2019
(Magma) m:=20; c:=7; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
(Sage) m = 20; b=7; T = taylor(exp(x + (exp(b*x) -1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
(GAP) b:=7;; a:=[1, 2];; for n in [3..20] do a[n]:=2*a[n-1]+Sum([0..n-3], i->Binomial(n-2, i)*b^(n-2-i)*a[i+1]); od; Print(a); # Muniru A Asiru, Apr 10 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), A003576 (b=4), A003577 (b=5), A003578 (b=6), this sequence (b=7), A003580 (b=8), A003581 (b=9), A003582 (b=10).
KEYWORD
nonn
EXTENSIONS
Name clarified by Muniru A Asiru, Feb 24 2019
STATUS
approved
Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=9.
+10
13
1, 2, 13, 143, 1852, 27563, 473725, 9290396, 203745235, 4912490375, 128777672338, 3643086083981, 110557605978901, 3579776914324250, 123074955978249433, 4474133111905169219, 171363047274358839412, 6893620459732188296591, 290475101469031118494993
OFFSET
0,2
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
FORMULA
E.g.f.: exp(x + (exp(9*x) - 1)/9).
G.f.: 1/W(0), where W(k) = 1 - x - x/(1 - 9*(k+1)*x/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2014
a(n) = exp(-1/9) * Sum_{k>=0} (9*k + 1)^n / (9^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 9^(n + 1/9) * n^(n + 1/9) * exp(n/LambertW(9*n) - n - 1/9) / (sqrt(1 + LambertW(9*n)) * LambertW(9*n)^(n + 1/9)). - Vaclav Kotesovec, Jun 26 2022
EXAMPLE
G.f. = 1 + 2*x + 13*x^2 + 143*x^3 + 1852*x^4 + 27563*x^5 + ...
MAPLE
seq(coeff(series(factorial(n)*exp(z+(1/9)*exp(9*z)-(1/9)), z, n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 24 2019
MATHEMATICA
With[{m=20, b=9}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 9^k * BellB[k, 1/9], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) Vec(serlaplace(exp(z + (exp(9*z) - 1)/9))) \\ Michel Marcus, Nov 07 2014
(Magma) m:=20; c:=9; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
(Sage) m = 20; b=9; T = taylor(exp(x +(exp(b*x)-1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), A003576 (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), this sequence (b=9), A003582 (b=10), A364069 (b=63), A364070 (b=624).
KEYWORD
nonn
EXTENSIONS
Name clarified by Muniru A Asiru, Feb 24 2019
STATUS
approved
Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=10.
+10
13
1, 2, 14, 168, 2356, 37832, 701464, 14866848, 352943376, 9219925792, 261954304224, 8033968939648, 264411579439936, 9288709762556032, 346608927301622144, 13680000261825018368, 569006722158124974336, 24864267879086770135552, 1138321277772163220033024
OFFSET
0,2
COMMENTS
In general, for b > 0, if e.g.f. = exp(x + (exp(b*x) - 1)/b), then a(n) ~ b^(n + 1/b) * n^(n + 1/b) * exp(n/LambertW(b*n) - n - 1/b) / (sqrt(1 + LambertW(b*n)) * LambertW(b*n)^(n + 1/b)). - Vaclav Kotesovec, Jun 26 2022
LINKS
Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
FORMULA
E.g.f.: exp(x + (exp(10*x) - 1)/10).
a(n) = exp(-1/10) * Sum_{k>=0} (10*k + 1)^n / (10^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) ~ 10^(n + 1/10) * n^(n + 1/10) * exp(n/LambertW(10*n) - n - 1/10) / (sqrt(1 + LambertW(10*n)) * LambertW(10*n)^(n + 1/10)). - Vaclav Kotesovec, Jun 26 2022
MAPLE
seq(coeff(series(factorial(n)*exp(z+(1/10)*exp(10*z)-(1/10)), z, n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 24 2019
MATHEMATICA
With[{m=20, b=10}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)
Table[Sum[Binomial[n, k] * 10^k * BellB[k, 1/10], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
PROG
(PARI) my(x='x+O('x^20)); b=10; Vec(serlaplace(exp(x +(exp(b*x)-1)/b))) \\ G. C. Greubel, Feb 24 2019
(Magma) m:=20; c:=10; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
(Sage) m = 20; b=10; T = taylor(exp(x + (exp(b*x) -1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019
CROSSREFS
Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), A003576 (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), A003581 (b=9), this sequence (b=10).
KEYWORD
nonn
EXTENSIONS
Name clarified by Muniru A Asiru, Feb 24 2019
STATUS
approved
a(n) = exp(-1/2) * Sum_{k>=0} (2*k - 1)^n / (2^k * k!).
+10
7
1, 0, 2, 4, 20, 96, 552, 3536, 25104, 194816, 1637408, 14792768, 142761280, 1464117760, 15886137984, 181667507456, 2182268117248, 27456279388160, 360872502280704, 4943580063237120, 70437638474568704, 1041911242274562048, 15972832382065977344, 253388070573020401664
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = (1 - 2*x + x*A(x/(1 - 2*x))) / (1 - x - 2*x^2).
G.f.: (1/(1 + x)) * Sum_{k>=0} (x/(1 + x))^k / Product_{j=1..k} (1 - 2*j*x/(1 + x)).
E.g.f.: exp((exp(2*x) - 1) / 2 - x).
a(0) = 1; a(n) = Sum_{k=1..n-1} binomial(n-1,k) * 2^k * a(n-k-1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A004211(k).
a(n) ~ 2^(n - 1/2) * n^(n - 1/2) * exp(n/LambertW(2*n) - n - 1/2) / (sqrt(1 + LambertW(2*n)) * LambertW(2*n)^(n - 1/2)). - Vaclav Kotesovec, Jun 26 2022
MAPLE
E:= exp((exp(2*x)-1)/2-x):
S:= series(E, x, 31):
seq(coeff(S, x, i)*i!, i=0..30); # Robert Israel, Aug 26 2020
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[(Exp[2 x] - 1)/2 - x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k] 2^k a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
Table[Sum[(-1)^(n - k) Binomial[n, k] 2^k BellB[k, 1/2], {k, 0, n}], {n, 0, 23}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 12 2020
STATUS
approved

Search completed in 0.015 seconds