Displaying 1-5 of 5 results found.
page
1
Third convolution of the powers of 3 ( A000244).
+10
43
1, 9, 54, 270, 1215, 5103, 20412, 78732, 295245, 1082565, 3897234, 13817466, 48361131, 167403915, 573956280, 1951451352, 6586148313, 22082967873, 73609892910, 244074908070, 805447196631, 2646469360359, 8661172452084, 28242953648100, 91789599356325, 297398301914493, 960825283108362, 3095992578904722
COMMENTS
With offset = 2, a(n) is the number of length n words on alphabet {u,v,w,z} such that each word contains exactly 2 u's. - Zerinvary Lajos, Dec 29 2007
FORMULA
Numerators of sequence a[3,n] in (b^2)[i,j]) where b[i,j] = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 if j > i.
a(n) = 3^(n-3)*binomial(n-1, 2).
G.f.: (x/(1-3*x))^3. (Third convolution of A000244, powers of 3.) (End)
The sequence 0, 1, 9, 54, ... has e.g.f.: (x + 3*x^2/2)*exp(3*x)/. - Paul Barry, Jul 23 2003
E.g.f.: E(0) where E(k) = 1 + 3*(2*k+3)*x/((2*k+1)^2 - 3*x*(k+2)*(2*k+1)^2/(3*x*(k+2) + 2*(k+1)^2/E(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 23 2012
Sum_{n>=3} 1/a(n) = 6 - 12*log(3/2).
Sum_{n>=3} (-1)^(n+1)/a(n) = 24*log(4/3) - 6. (End)
MATHEMATICA
nn=41; Drop[Range[0, nn]!CoefficientList[Series[Exp[x]^3 x^2/2!, {x, 0, nn}], x], 2] (* Geoffrey Critzer, Oct 03 2013 *)
LinearRecurrence[{9, -27, 27}, {1, 9, 54}, 40] (* G. C. Greubel, May 12 2021 *)
Abs[Take[CoefficientList[Series[1/(1+3x^2)^3, {x, 0, 60}], x], {1, -1, 2}]] (* Harvey P. Dale, Mar 03 2022 *)
PROG
(Sage) [3^(n-3)*binomial(n-1, 2) for n in range(3, 40)] # Zerinvary Lajos, Mar 10 2009
(Magma) [3^(n-3)*Binomial(n-1, 2): n in [3..40]]; // G. C. Greubel, May 12 2021
CROSSREFS
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), this sequence (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).
Array read by antidiagonals: A(n,k) = (k+1)^n*(n+k)!/n!.
+10
14
1, 1, 1, 1, 4, 2, 1, 12, 18, 6, 1, 32, 108, 96, 24, 1, 80, 540, 960, 600, 120, 1, 192, 2430, 7680, 9000, 4320, 720, 1, 448, 10206, 53760, 105000, 90720, 35280, 5040, 1, 1024, 40824, 344064, 1050000, 1451520, 987840, 322560, 40320
COMMENTS
A009998/ A119502 gives triangle of unreduced coefficients of polynomials defined by A152650/ A152656. a(n) gives numerators with denominators n! for each row.
FORMULA
E.g.f. for array as a triangle: exp(x)/(1-t*x*exp(x)) = 1+(1+t)*x+(1+4*t+2*t^2)*x^2/2! + (1+12*t+18*t^2+6*t^3)*x^3/3! + .... E.g.f. is int {z = 0..inf} exp(-z)*F(x,t*z), (x and t chosen sufficiently small for the integral to converge), where F(x,t) = exp(x*(1+t*exp(x))) is the e.g.f. for A154372. - Peter Bala, Oct 09 2011
From the e.g.f., the row polynomials R(n,t) satisfy the recursion R(n,t) = 1 + t*sum {k = 0..n-1} n!/(k!*(n-k-1)!)*R(n-k-1,t). The polynomials 1/n!*R(n,x) are the polynomials P(n,x) of A152650.
Sum_{k=0..n} T(n, k) = A072597(n) (antidiagonal sums). (End)
T(n, k) = (k+1)^(n-k) * k! * binomial(n, k) (antidiagonal triangle).
Sum_{k=0..n} (-1)^k*T(n, k) = A089148(n). (End)
EXAMPLE
Array begins:
1, 1, 2, 6, 24, 120, ...
1, 4, 18, 96, 600, 4320, ...
1, 12, 108, 960, 9000, 90720, ...
1, 32, 540, 7680, 105000, 1451520, ...
1, 80, 2430, 53760, 1050000, 19595520, ...
1, 192, 10206, 344064, 9450000, 235146240, ...
1, 448, 40824, 2064384, 78750000, 2586608640, ...
1, 1024, 157464, 11796480, 618750000, 26605117440, ...
1, 2304, 590490, 64880640, 4640625000, 259399895040, ... (End)
Antidiagonal triangle:
1;
1, 1;
1, 4, 2;
1, 12, 18, 6;
1, 32, 108, 96, 24;
1, 80, 540, 960, 600, 120;
1, 192, 2430, 7680, 9000, 4320, 720;
1, 448, 10206, 53760, 105000, 90720, 35280, 5040;
MATHEMATICA
len= 45; m= 1 + Ceiling[Sqrt[len]]; Sort[Flatten[#, 1] &[MapIndexed[ {(2 +#2[[1]]^2 +(#2[[2]] -1)*#2[[2]] +#2[[1]]*(2*#2[[2]] -3))/ 2, #1}&, Table[(k+1)^n*(n+k)!/n!, {n, 0, m}, {k, 0, m}], {2}]]][[All, 2]][[1 ;; len]] (* From Jean-François Alcover, May 27 2011 *)
T[n_, k_]:= (k+1)^(n-k)*k!*Binomial[n, k];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 10 2023 *)
PROG
(Sage)
R.<x> = ZZ[]
P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n))
return P.coefficients()
(Magma)
A152818:= func< n, k | (k+1)^(n-k)*Factorial(k)*Binomial(n, k) >;
a(n) = 4^(n-4)*(n-1)*(n-2)*(n-3).
(Formerly M4290)
+10
6
6, 96, 960, 7680, 53760, 344064, 2064384, 11796480, 64880640, 346030080, 1799356416, 9160359936, 45801799680, 225485783040, 1095216660480, 5257039970304, 24970939858944, 117510305218560, 548381424353280, 2539871860162560, 11683410556747776, 53409876830846976
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
E.g.f.: (3 + exp(4*x)*(32*x^3 - 24*x^2 + 12*x - 3))/128. - Stefano Spezia, Jan 01 2023
Sum_{n>=4} 1/a(n) = 18*log(4/3) - 5.
Sum_{n>=4} (-1)^n/a(n) = 50*log(5/4) - 11. (End)
MATHEMATICA
a[n_] := 4^(n - 4)*(n - 1)*(n - 2)*(n - 3); Array[a, 25, 4] (* Amiram Eldar, Jan 08 2023 *)
EXTENSIONS
Erroneous reference deleted by Martin J. Erickson (erickson(AT)truman.edu), Nov 03 2010
Triangle T(n,k) = (k+1)^(n-k)*binomial(n,k).
+10
4
1, 1, 1, 1, 4, 1, 1, 12, 9, 1, 1, 32, 54, 16, 1, 1, 80, 270, 160, 25, 1, 1, 192, 1215, 1280, 375, 36, 1, 1, 448, 5103, 8960, 4375, 756, 49, 1, 1, 1024, 20412, 57344, 43750, 12096, 1372, 64, 1
COMMENTS
(*) Not factorial as written in A006044. See A000110, Bell-Touchard. Second diagonal is 1,4,9,16,25, denominators of Lyman's spectrum of hydrogen, A000290(n+1) which has homogeneous indices for denominators series of Rydberg-Ritz spectrum of hydrogen.
The matrix inverse starts
1;
-1, 1;
3, -4, 1;
-16, 24, -9, 1;
125, -200, 90, -16, 1;
-1296, 2160, -1080, 240, -25, 1;
16807, -28812, 15435, -3920, 525, -36, 1;
Exponential Riordan array [exp(z), z*exp(z)]. This triangle is the particular case a = 0, b = 1, c = 1 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. Cf. A059297.
This is the triangle of connection constants when expressing the monomials x^n as a linear combination of the basis polynomials (x - 1)*(x - k - 1)^(k-1), k = 0,1,2,.... For example, from row 3 we have x^3 = 1 + 12*(x - 1) + 9*(x - 1)*(x - 3) + (x - 1)*(x - 4)^2.
Let M be the infinite lower unit triangular array with (n,k)-th entry (k*(n - k + 1) + 1)/(k + 1)*binomial(n,k). M is the row reverse of A145033. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to the present triangle. See the Example section. (End)
T(n,k) is also the number of idempotent partial transformations of {1,2,...,n} having exactly k fixed points. - Geoffrey Critzer, Nov 25 2021
FORMULA
T(n,k) = (k+1)^(n-k)*binomial(n,k). k!*T(n,k) gives the entries for A152818 read as a triangular array.
E.g.f.: exp(x*(1+t*exp(x))) = 1 + (1+t)*x + (1+4*t+t^2)*x^2/2! + (1+12*t+9*t^2+t*3)*x^3/3! + .... O.g.f.: Sum_{k>=1} (t*x)^(k-1)/(1-k*x)^k = 1 + (1+t)*x + (1+4*t+t^2)*x^2 + .... Row sums are A080108. - Peter Bala, Oct 09 2011
Recurrence equation: T(n+1,k+1) = T(n,k+1) + Sum_{j = 0..n-k} (j + 1)*binomial(n,j)*T(n-j,k) with T(n,0) = 1 for all n.
EXAMPLE
With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \ /1 \ /1 \ /1 \
|1 1 ||0 1 ||0 1 | |1 1 |
|1 3 1 ||0 1 1 ||0 0 1 |... = |1 4 1 |
|1 6 5 1 ||0 1 3 1 ||0 0 1 1 | |1 12 9 1|
|... ||0 1 6 5 1 ||0 0 1 3 1| |... |
|... ||... ||... | | |
MATHEMATICA
T[n_, k_] := (k + 1)^(n - k)*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 15 2016 *)
PROG
(Magma) /* As triangle */ [[(k+1)^(n-k)*Binomial(n, k) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 15 2016
24, 600, 9000, 105000, 1050000, 9450000, 78750000, 618750000, 4640625000, 33515625000, 234609375000, 1599609375000, 10664062500000, 69726562500000, 448242187500000, 2838867187500000, 17742919921875000, 109588623046875000
FORMULA
a(n) = 5^n*(n+4)*(n+3)*(n+2)*(n+1).
G.f: 24/(1-5*x)^5. (End)
a(n) = 25*a(n-1) - 250*a(n-2) + 1250*a(n-3) - 3125*a(n-4) + 3125*a(n-5).
E.g.f.: (24 + 480*x + 1800*x^2 + 2000*x^3 + 625*x^4)*exp(5*x). (End)
MATHEMATICA
LinearRecurrence[{25, -250, 1250, -3125, 3125}, {24, 600, 9000, 105000, 1050000}, 25] (* or *) Table[5^n*(n+4)*(n+3)*(n+2)*(n+1), {n, 0, 25}] (* G. C. Greubel, Sep 02 2016 *)
PROG
(Magma) [5^n*(n+4)*(n+3)*(n+2)*(n+1): n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
Search completed in 0.013 seconds
|