[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a005320 -id:a005320
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - a(n-2).
(Formerly M1769 N0700)
+10
104
1, 2, 7, 26, 97, 362, 1351, 5042, 18817, 70226, 262087, 978122, 3650401, 13623482, 50843527, 189750626, 708158977, 2642885282, 9863382151, 36810643322, 137379191137, 512706121226, 1913445293767, 7141075053842, 26650854921601, 99462344632562, 371198523608647
OFFSET
0,2
COMMENTS
Chebyshev's T(n,x) polynomials evaluated at x=2.
x = 2^n - 1 is prime if and only if x divides a(2^(n-2)).
Any k in the sequence is succeeded by 2*k + sqrt{3*(k^2 - 1)}. - Lekraj Beedassy, Jun 28 2002
For all elements x of the sequence, 12*x^2 - 12 is a square. Lim_{n -> infinity} a(n)/a(n-1) = 2 + sqrt(3) = (4 + sqrt(12))/2 which preserves the kinship with the equation "12*x^2 - 12 is a square" where the initial "12" ends up appearing as a square root. - Gregory V. Richardson, Oct 10 2002
This sequence gives the values of x in solutions of the Diophantine equation x^2 - 3*y^2 = 1; the corresponding values of y are in A001353. The solution ratios a(n)/A001353(n) are obtained as convergents of the continued fraction expansion of sqrt(3): either as successive convergents of [2;-4] or as odd convergents of [1;1,2]. - Lekraj Beedassy, Sep 19 2003 [edited by Jon E. Schoenfield, May 04 2014]
a(n) is half the central value in a list of three consecutive integers, the lengths of the sides of a triangle with integer sides and area. - Eugene McDonnell (eemcd(AT)mac.com), Oct 19 2003
a(3+6*k) - 1 and a(3+6*k) + 1 are consecutive odd powerful numbers. See A076445. - T. D. Noe, May 04 2006
The intermediate convergents to 3^(1/2), beginning with 3/2, 12/7, 45/26, 168/97, comprise a strictly increasing sequence; essentially, numerators=A005320, denominators=A001075. - Clark Kimberling, Aug 27 2008
The upper principal convergents to 3^(1/2), beginning with 2/1, 7/4, 26/15, 97/56, comprise a strictly decreasing sequence; numerators=A001075, denominators=A001353. - Clark Kimberling, Aug 27 2008
a(n+1) is the Hankel transform of A000108(n) + A000984(n) = (n+2)*Catalan(n). - Paul Barry, Aug 11 2009
Also, numbers such that floor(a(n)^2/3) is a square: base 3 analog of A031149, A204502, A204514, A204516, A204518, A204520, A004275, A001541. - M. F. Hasler, Jan 15 2012
Pisano period lengths: 1, 2, 2, 4, 3, 2, 8, 4, 6, 6, 10, 4, 12, 8, 6, 8, 18, 6, 5, 12, ... - R. J. Mathar, Aug 10 2012
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 3 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 48 = 0. - Colin Barker, Feb 10 2014
A triangle with row sums generating the sequence can be constructed by taking the production matrix M. Take powers of M, extracting the top rows.
M =
1, 1, 0, 0, 0, 0, ...
2, 0, 3, 0, 0, 0, ...
2, 0, 0, 3, 0, 0, ...
2, 0, 0, 0, 3, 0, ...
2, 0, 0, 0, 0, 3, ...
...
The triangle generated from M is:
1,
1, 1,
3, 1, 3,
11, 3, 3, 9,
41, 11, 9, 9, 27,
...
The left border is A001835 and row sums are (1, 2, 7, 26, 97, ...). - Gary W. Adamson, Jul 25 2016
Even-indexed terms are odd while odd-indexed terms are even. Indeed, a(2*n) = 2*(a(n))^2 - 1 and a(2*n+1) = 2*a(n)*a(n+1) - 2. - Timothy L. Tiffin, Oct 11 2016
For each n, a(0) divides a(n), a(1) divides a(2n+1), a(2) divides a(4*n+2), a(3) divides a(6*n+3), a(4) divides a(8*n+4), a(5) divides a(10n+5), and so on. Thus, a(k) divides a((2*n+1)*k) for each k > 0 and n >= 0. A proof of this can be found in Bhargava-Kedlaya-Ng's first solution to Problem A2 of the 76th Putnam Mathematical Competition. Links to the exam and its solutions can be found below. - Timothy L. Tiffin, Oct 12 2016
From Timothy L. Tiffin, Oct 21 2016: (Start)
If any term a(n) is a prime number, then its index n will be a power of 2. This is a consequence of the results given in the previous two comments. See A277434 for those prime terms.
a(2n) == 1 (mod 6) and a(2*n+1) == 2 (mod 6). Consequently, each odd prime factor of a(n) will be congruent to 1 modulo 6 and, thus, found in A002476.
a(n) == 1 (mod 10) if n == 0 (mod 6), a(n) == 2 (mod 10) if n == {1,-1} (mod 6), a(n) == 7 (mod 10) if n == {2,-2} (mod 6), and a(n) == 6 (mod 10) if n == 3 (mod 6). So, the rightmost digits of a(n) form a repeating cycle of length 6: 1, 2, 7, 6, 7, 2. (End)
a(A298211(n)) = A002350(3*n^2). - A.H.M. Smeets, Jan 25 2018
(2 + sqrt(3))^n = a(n) + A001353(n)*sqrt(3), n >= 0; integers in the quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 16 2018
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001834 and with any member of A001835. - René Gy, Feb 26 2018
Positive numbers k such that 3*(k-1)*(k+1) is a square. - Davide Rotondo, Oct 25 2020
a(n)*a(n+1)-1 = a(2*n+1)/2 = A001570(n) divides both a(n)^6+1 and a(n+1)^6+1. In other words, for k = a(2*n+1)/2, (k+1)^6 has divisors congruent to -1 modulo k (cf. A350916). - Max Alekseyev, Jan 23 2022
REFERENCES
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
Eugene McDonnell, "Heron's Rule and Integer-Area Triangles", Vector 12.3 (January 1996) pp. 133-142.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..1745 (terms 0..200 from T. D. Noe)
Christian Aebi and Grant Cairns, Lattice Equable Parallelograms, arXiv:2006.07566 [math.NT], 2020.
Christian Aebi and Grant Cairns, Less than Equable Triangles on the Eisenstein lattice, arXiv:2312.10866 [math.CO], 2023.
Krassimir T. Atanassov and Anthony G. Shannon, On intercalated Fibonacci sequences, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 218-223.
C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
H. Brocard, Notes élémentaires sur le problème de Peel [sic], Nouvelle Correspondance Mathématique, 4 (1878), 337-343.
Chris Caldwell, Primality Proving, Arndt's theorem.
J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp., 2016.
G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Margherita Maria Ferrari and Norma Zagaglia Salvi, Aperiodic Compositions and Classical Integer Sequences, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.8.
R. K. Guy, Letter to N. J. A. Sloane concerning A001075, A011943, A094347 [Scanned and annotated letter, included with permission]
Tanya Khovanova, Recursive Sequences
Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
Eugene McDonnell, Heron's Rule and Integer-Area Triangles, At Play With J, 2010.
Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
Yong Hao Ng, A partition in three classes of the set of all prime numbers?, Mathematics Stack Exchange.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
F. V. Waugh and M. W. Maxfield, Side-and-diagonal numbers, Math. Mag., 40 (1967), 74-83.
FORMULA
G.f.: (1 - 2*x)/(1 - 4*x + x^2). - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(2*x)*cosh(sqrt(3)*x).
a(n) = 4*a(n-1) - a(n-2) = a(-n).
a(n) = (S(n, 4) - S(n-2, 4))/2 = T(n, 2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U, resp. T, are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 4) = A001353(n), n >= 0. See A049310 and A053120.
a(n) = A001353(n+2) - 2*A001353(n+1).
a(n) = sqrt(1 + 3*A001353(n)) (cf. Richardson comment, Oct 10 2002).
a(n) = 2^(-n)*Sum_{k>=0} binomial(2*n, 2*k)*3^k = 2^(-n)*Sum_{k>=0} A086645(n, k)*3^k. - Philippe Deléham, Mar 01, 2004
a(n) = ((2 + sqrt(3))^n + (2 - sqrt(3))^n)/2; a(n) = ceiling((1/2)*(2 + sqrt(3))^(n)).
a(n) = cosh(n * log(2 + sqrt(3))).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k)*3^k. - Paul Barry, May 08 2003
a(n+2) = 2*a(n+1) + 3*Sum_{k>=0} a(n-k)*2^k. - Philippe Deléham, Mar 03 2004
a(n) = 2*a(n-1) + 3*A001353(n-1). - Lekraj Beedassy, Jul 21 2006
a(n) = left term of M^n * [1,0] where M = the 2 X 2 matrix [2,3; 1,2]. Right term = A001353(n). Example: a(4) = 97 since M^4 * [1,0] = [A001075(4), A001353(4)] = [97, 56]. - Gary W. Adamson, Dec 27 2006
Binomial transform of A026150: (1, 1, 4, 10, 28, 76, ...). - Gary W. Adamson, Nov 23 2007
First differences of A001571. - N. J. A. Sloane, Nov 03 2009
Sequence satisfies -3 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(n) = Sum_{k=0..n} A201730(n,k)*2^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k - 4)/(x*(3*k - 1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
a(n) = Sum_{k=0..n} A238731(n,k). - Philippe Deléham, Mar 05 2014
a(n) = (-1)^n*(A125905(n) + 2*A125905(n-1)), n > 0. - Franck Maminirina Ramaharo, Nov 11 2018
a(n) = (tan(Pi/12)^n + tan(5*Pi/12)^n)/2. - Greg Dresden, Oct 01 2020
From Peter Bala, Aug 17 2022: (Start)
a(n) = (1/2)^n * [x^n] ( 4*x + sqrt(1 + 12*x^2) )^n.
The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 8*x + 4*x^2) is the g.f. of A069835.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k.
Sum_{n >= 1} 1/(a(n) - (3/2)/a(n)) = 1.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + (1/2)/a(n)) = 1/3.
Sum_{n >= 1} 1/(a(n)^2 - 3/2) = 1 - 1/sqrt(3). (End)
a(n) = binomial(2*n, n) + 2*Sum_{k > 0} binomial(2*n, n+2*k)*cos(k*Pi/3). - Greg Dresden, Oct 11 2022
2*a(n) + 2^n = 3*Sum_{k=-n..n} (-1)^k*binomial(2*n, n+6*k). - Greg Dresden, Feb 07 2023
EXAMPLE
2^6 - 1 = 63 does not divide a(2^4) = 708158977, therefore 63 is composite. 2^5 - 1 = 31 divides a(2^3) = 18817, therefore 31 is prime.
G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 97*x^4 + 362*x^5 + 1351*x^6 + 5042*x^7 + ...
MAPLE
A001075 := proc(n)
orthopoly[T](n, 2) ;
end proc:
seq(A001075(n), n=0..30) ; # R. J. Mathar, Apr 14 2018
MATHEMATICA
Table[ Ceiling[(1/2)*(2 + Sqrt[3])^n], {n, 0, 24}]
CoefficientList[Series[(1-2*x) / (1-4*x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Dec 21 2011, after Simon Plouffe *)
LinearRecurrence[{4, -1}, {1, 2}, 30] (* Harvey P. Dale, Aug 22 2015 *)
Round@Table[LucasL[2n, Sqrt[2]]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
ChebyshevT[Range[0, 20], 2] (* Eric W. Weisstein, May 26 2017 *)
a[ n_] := LucasL[2*n, x]/2 /. x->Sqrt[2]; (* Michael Somos, Sep 05 2022 *)
PROG
(PARI) {a(n) = subst(poltchebi(abs(n)), x, 2)};
(PARI) {a(n) = real((2 + quadgen(12))^abs(n))};
(PARI) {a(n) = polsym(1 - 4*x + x^2, abs(n))[1 + abs(n)]/2};
(PARI) a(n)=polchebyshev(n, 1, 2) \\ Charles R Greathouse IV, Nov 07 2016
(PARI) my(x='x+O('x^30)); Vec((1-2*x)/(1-4*x+x^2)) \\ G. C. Greubel, Dec 19 2017
(SageMath) [lucas_number2(n, 4, 1)/2 for n in range(0, 25)] # Zerinvary Lajos, May 14 2009
(Haskell)
a001075 n = a001075_list !! n
a001075_list =
1 : 2 : zipWith (-) (map (4 *) $ tail a001075_list) a001075_list
-- Reinhard Zumkeller, Aug 11 2011
(SageMath)
def a(n):
Q = QuadraticField(3, 't')
u = Q.units()[0]
return (u^n).lift().coeffs()[0] # Ralf Stephan, Jun 19 2014
(Magma) I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, Jul 10 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002
STATUS
approved
a(n) = 4*a(n-2) - a(n-4) for n > 1, a(n) = n for n = 0, 1.
(Formerly M2363 N0934)
+10
69
0, 1, 1, 3, 4, 11, 15, 41, 56, 153, 209, 571, 780, 2131, 2911, 7953, 10864, 29681, 40545, 110771, 151316, 413403, 564719, 1542841, 2107560, 5757961, 7865521, 21489003, 29354524, 80198051, 109552575, 299303201, 408855776, 1117014753, 1525870529, 4168755811
OFFSET
0,4
COMMENTS
Denominators of continued fraction convergents to sqrt(3), for n >= 1.
Also denominators of continued fraction convergents to sqrt(3) - 1. See A048788 for numerators. - N. J. A. Sloane, Dec 17 2007. Convergents are 1, 2/3, 3/4, 8/11, 11/15, 30/41, 41/56, 112/153, ...
Consider the mapping f(a/b) = (a + 3*b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 2/1, 5/3, 7/4, 19/11, ... converging to 3^(1/2). Sequence contains the denominators. The same mapping for N, i.e., f(a/b) = (a + Nb)/(a + b) gives fractions converging to N^(1/2). - Amarnath Murthy, Mar 22 2003
Sqrt(3) = 2/2 + 2/3 + 2/(3*11) + 2/(11*41) + 2/(41*153) + 2/(153*571), ...; the sum of the first 6 terms of this series = 1.7320490367..., while sqrt(3) = 1.7320508075... - Gary W. Adamson, Dec 15 2007
From Clark Kimberling, Aug 27 2008: (Start)
Related convergents (numerator/denominator):
lower principal convergents: A001834/A001835
upper principal convergents: A001075/A001353
intermediate convergents: A005320/A001075
principal and intermediate convergents: A143642/A140827
lower principal and intermediate convergents: A143643/A005246. (End)
Row sums of triangle A152063 = (1, 3, 4, 11, ...). - Gary W. Adamson, Nov 26 2008
From Alois P. Heinz, Apr 13 2011: (Start)
Also number of domino tilings of the 3 X (n-1) rectangle with upper left corner removed iff n is even. For n=4 the 4 domino tilings of the 3 X 3 rectangle with upper left corner removed are:
. .___. . .___. . .___. . .___.
._|___| ._|___| ._| | | ._|___|
| |___| | | | | | |_|_| |___| |
|_|___| |_|_|_| |_|___| |___|_| (End)
This is the sequence of Lehmer numbers u_n(sqrt(R),Q) with the parameters R = 2 and Q = -1. It is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all natural numbers n and m. - Peter Bala, Apr 18 2014
2^(-floor(n/2))*(1 + sqrt(3))^n = A002531(n) + a(n)*sqrt(3); integers in the real quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 11 2018
Let T(n) = 2^(n mod 2), U(n) = a(n), V(n) = A002531(n), x(n) = V(n)/U(n). Then T(n*m) * U(n+m) = U(n)*V(m) + U(m)*V(n), T(n*m) * V(n+m) = 3*U(n)*U(m) + V(m)*V(n), x(n+m) = (3 + x(n)*x(m))/(x(n) + x(m)). - Michael Somos, Nov 29 2022
REFERENCES
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
Russell Lyons, A bird's-eye view of uniform spanning trees and forests, in Microsurveys in Discrete Probability, AMS, 1998.
I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 181.
Murat Sahin and Elif Tan, Conditional (strong) divisibility sequences, Fib. Q., 56 (No. 1, 2018), 18-31.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
LINKS
Mario Catalani, Sequences related to convergents to square root of rationals, arXiv:math/0305270 [math.NT], 2003.
Marcia Edson, Scott Lewis and Omer Yayenie, The k-periodic Fibonacci sequence and an extended Binet's formula, INTEGERS 11 (2011) #A32.
Aviezri S. Fraenkel, Jonathan Levitt, and Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
Clark Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
D'Arcy Thompson, Excess and Defect: Or the Little More and the Little Less, Mind, New Series, Vol. 38, No. 149 (Jan., 1929), pp. 43-55 (13 pages). See page 48.
Hein van Winkel, Q-quadrangles inscribed in a circle, 2014. See Table 1. [Reference from Antreas Hatzipolakis, Jul 14 2014]
E. W. Weisstein, MathWorld: Lehmer Number
FORMULA
G.f.: x*(1 + x - x^2)/(1 - 4*x^2 + x^4).
a(n) = 4*a(n-2) - a(n-4). [Corrected by László Szalay, Feb 21 2014]
a(n) = -(-1)^n * a(-n) for all n in Z, would satisfy the same recurrence relation. - Michael Somos, Jun 05 2003
a(2*n) = a(2*n-1) + a(2*n-2), a(2*n+1) = 2*a(2*n) + a(2*n-1).
From Benoit Cloitre, Dec 15 2002: (Start)
a(2*n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/(2*sqrt(3)).
a(2*n) = A001353(n).
a(2*n-1) = ceiling((1 + 1/sqrt(3))/2*(2 + sqrt(3))^n) = ((3 + sqrt(3))^(2*n - 1) + (3 - sqrt(3))^(2*n - 1))/6^n.
a(2*n-1) = A001835(n). (End)
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n - k, k) * 2^floor((n - 2*k)/2). - Paul Barry, Jul 13 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2) + k, floor((n - 1)/2 - k))*2^k. - Paul Barry, Jun 22 2005
G.f.: (sqrt(6) + sqrt(3))/12*Q(0), where Q(k) = 1 - a/(1 + 1/(b^(2*k) - 1 - b^(2*k)/(c + 2*a*x/(2*x - g*m^(2*k)/(1 + a/(1 - 1/(b^(2*k + 1) + 1 - b^(2*k + 1)/(h - 2*a*x/(2*x + g*m^(2*k + 1)/Q(k + 1)))))))))). - Sergei N. Gladkovskii, Jun 21 2012
a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, and a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even, where alpha = 1/2*(sqrt(2) + sqrt(6)) and beta = (1/2)*(sqrt(2) - sqrt(6)). Cf. A108412. - Peter Bala, Apr 18 2014
a(n) = (-sqrt(2)*i)^n*S(n, sqrt(2)*i)*2^(-floor(n/2)) = A002605(n)*2^(-floor(n/2)), n >= 0, with i = sqrt(-1) and S the Chebyshev polynomials (A049310). - Wolfdieter Lang, Feb 10 2018
a(n+1)*a(n+2) - a(n+3)*a(n) = (-1)^n, n >= 0. - Kai Wang, Feb 06 2020
E.g.f.: sinh(sqrt(3/2)*x)*(sinh(x/sqrt(2)) + sqrt(2)*cosh(x/sqrt(2)))/sqrt(3). - Stefano Spezia, Feb 07 2020
a(n) = ((1 + sqrt(3))^n - (1 - sqrt(3))^n)/(2*2^floor(n/2))/sqrt(3) = A002605(n)/2^floor(n/2). - Robert FERREOL, Apr 13 2023
EXAMPLE
Convergents to sqrt(3) are: 1, 2, 5/3, 7/4, 19/11, 26/15, 71/41, 97/56, 265/153, 362/209, 989/571, 1351/780, 3691/2131, ... = A002531/A002530 for n >= 1.
1 + 1/(1 + 1/(2 + 1/(1 + 1/2))) = 19/11 so a(5) = 11.
G.f. = x + x^2 + 3*x^3 + 4*x^4 + 11*x^5 + 15*x^6 + 41*x^7 + ... - Michael Somos, Mar 18 2022
MAPLE
a := proc(n) option remember; if n=0 then 0 elif n=1 then 1 elif n=2 then 1 elif n=3 then 3 else 4*a(n-2)-a(n-4) fi end; [ seq(a(i), i=0..50) ];
A002530:=-(-1-z+z**2)/(1-4*z**2+z**4); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Join[{0}, Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[3], n]]], {n, 1, 50}]] (* Stefan Steinerberger, Apr 01 2006 *)
Join[{0}, Denominator[Convergents[Sqrt[3], 50]]] (* or *) LinearRecurrence[ {0, 4, 0, -1}, {0, 1, 1, 3}, 50] (* Harvey P. Dale, Jan 29 2013 *)
a[ n_] := If[n<0, -(-1)^n, 1] SeriesCoefficient[ x*(1+x-x^2)/(1-4*x^2+x^4), {x, 0, Abs@n}]; (* Michael Somos, Apr 18 2019 *)
a[ n_] := ChebyshevU[n-1, Sqrt[-1/2]]*Sqrt[2]^(Mod[n, 2]-1)/I^(n-1) //Simplify; (* Michael Somos, Nov 29 2022 *)
PROG
(PARI) {a(n) = if( n<0, -(-1)^n * a(-n), contfracpnqn(vector(n, i, 1 + (i>1) * (i%2)))[2, 1])}; /* Michael Somos, Jun 05 2003 */
(PARI) { default(realprecision, 2000); for (n=0, 50, a=contfracpnqn(vector(n, i, 1+(i>1)*(i%2)))[2, 1]; write("b002530.txt", n, " ", a); ); } \\ Harry J. Smith, Jun 01 2009
(PARI) apply( {A002530(n, w=quadgen(12))=real((2+w)^(n\/2)*if(bittest(n, 0), 1-w/3, w/3))}, [0..30]) \\ M. F. Hasler, Nov 04 2019
(Magma) I:=[0, 1, 1, 3]; [n le 4 select I[n] else 4*Self(n-2) - Self(n-4): n in [1..50]]; // G. C. Greubel, Feb 25 2019
(Sage) (x*(1+x-x^2)/(1-4*x^2+x^4)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
(Python)
from functools import cache
@cache
def a(n): return [0, 1, 1, 3][n] if n < 4 else 4*a(n-2) - a(n-4)
print([a(n) for n in range(36)]) # Michael S. Branicky, Nov 13 2022
CROSSREFS
Cf. A002531 (numerators of convergents to sqrt(3)), A048788, A003297.
Bisections: A001353 and A001835.
Cf. A152063.
Analog for sqrt(m): A000129 (m=2), A001076 (m=5), A041007 (m=6), A041009 (m=7), A041011 (m=8), A005668 (m=10), A041015 (m=11), A041017 (m=12), ..., A042935 (m=999), A042937 (m=1000).
KEYWORD
nonn,easy,frac,core,nice
EXTENSIONS
Definition edited by M. F. Hasler, Nov 04 2019
STATUS
approved
a(n) = 4*a(n-1) - a(n-2) with a(0) = 2, a(1) = 4.
(Formerly M1278)
+10
51
2, 4, 14, 52, 194, 724, 2702, 10084, 37634, 140452, 524174, 1956244, 7300802, 27246964, 101687054, 379501252, 1416317954, 5285770564, 19726764302, 73621286644, 274758382274, 1025412242452, 3826890587534, 14282150107684, 53301709843202, 198924689265124
OFFSET
0,1
COMMENTS
a(n) gives values of x satisfying x^2 - 3*y^2 = 4; corresponding y values are given by 2*A001353(n).
If M is any given term of the sequence, then the next one is 2*M + sqrt(3*M^2 - 12). - Lekraj Beedassy, Feb 18 2002
For n > 0, the three numbers a(n) - 1, a(n), and a(n) + 1 form a Fleenor-Heronian triangle, i.e., a Heronian triangle with consecutive sides, whose area A(n) may be obtained from the relation [4*A(n)]^2 = 3([a(2n)]^2 - 4); or A(n) = 3*A001353(2*n)/2 and whose semiperimeter is 3*a[n]/2. The sequence is symmetrical about a[0], i.e., a[-n] = a[n].
For n > 0, a(n) + 2 is the number of dimer tilings of a 2*n X 2 Klein bottle (cf. A103999).
Tsumura shows that, for prime p, a(p) is composite (contrary to a conjecture of Juricevic). - Charles R Greathouse IV, Apr 13 2010
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 12 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 192 = 0. - Colin Barker, Feb 16 2014
A268281(n) - 1 is a member of this sequence iff A268281(n) is prime. - Frank M Jackson, Feb 27 2016
a(n) gives values of x satisfying 3*x^2 - 4*y^2 = 12; corresponding y values are given by A005320. - Sture Sjöstedt, Dec 19 2017
Middle side lengths of almost-equilateral Heronian triangles. - Wesley Ivan Hurt, May 20 2020
For all elements k of the sequence, 3*(k-2)*(k+2) is a square. - Davide Rotondo, Oct 25 2020
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 82.
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p.91.
Michael P. Cohen, Generating Heronian Triangles With Consecutive Integer Sides. Journal of Recreational Mathematics, vol. 30 no. 2 1999-2000 p. 123.
L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 197;198;200;201. Chelsea NY.
Charles R. Fleenor, Heronian Triangles with Consecutive Integer Sides, Journal of Recreational Mathematics, Volume 28, no. 2 (1996-7) 113-115.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
V. D. To, "Finding All Fleenor-Heronian Triangles", Journal of Recreational Mathematics vol. 32 no.4 2003-4 pp. 298-301 Baywood NY.
LINKS
R. A. Beauregard and E. R. Suryanarayan, The Brahmagupta Triangles, The College Mathematics Journal 29(1) 13-7 1998 MAA.
Hacène Belbachir, Soumeya Merwa Tebtoub and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv preprint arXiv:1505.06339 [math.NT], 2015.
H. W. Gould, A triangle with integral sides and area, Fib. Quart., 11 (1973), 27-39.
Tanya Khovanova, Recursive Sequences
E. Keith Lloyd, The Standard Deviation of 1, 2, ..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243.
S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6.
Hideyuki Ohtskua, proposer, Problem B-1351, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 62, No. 3 (2024), p. 258.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211.
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
Yu Tsumura, On compositeness of special types of integers, arXiv:1004.1244 [math.NT], 2010.
Eric Weisstein's World of Mathematics, Heronian Triangle
A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
FORMULA
a(n) = ( 2 + sqrt(3) )^n + ( 2 - sqrt(3) )^n.
a(n) = 2*A001075(n).
G.f.: 2*(1 - 2*x)/(1 - 4*x + x^2). Simon Plouffe in his 1992 dissertation.
a(n) = A001835(n) + A001835(n+1).
a(n) = trace of n-th power of the 2 X 2 matrix [1 2 / 1 3]. - Gary W. Adamson, Jun 30 2003 [corrected by Joerg Arndt, Jun 18 2020]
From the addition formula, a(n+m) = a(n)*a(m) - a(m-n), it is easy to derive multiplication formulas, such as: a(2*n) = (a(n))^2 - 2, a(3*n) = (a(n))^3 - 3*(a(n)), a(4*n) = (a(n))^4 - 4*(a(n))^2 + 2, a(5*n) = (a(n))^5 - 5*(a(n))^3 + 5*(a(n)), a(6*n) = (a(n))^6 - 6*(a(n))^4 + 9*(a(n))^2 - 2, etc. The absolute values of the coefficients in the expansions are given by the triangle A034807. - John Blythe Dobson, Nov 04 2007
a(n) = 2*A001353(n+1) - 4*A001353(n). - R. J. Mathar, Nov 16 2007
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n=0..infinity} (1 + x^(4*n + 1))/(1 + x^(4*n + 3)). Let alpha = 2 - sqrt(3). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.24561 99455 06551 88869 ... = 2 + 1/(4 + 1/(14 + 1/(52 + ...))). Cf. A174500.
Also F(-alpha) = 0.74544 81786 39692 68884 ... has the continued fraction representation 1 - 1/(4 - 1/(14 - 1/(52 - ...))) and the simple continued fraction expansion 1/(1 + 1/((4 - 2) + 1/(1 + 1/((14 - 2) + 1/(1 + 1/((52 - 2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((4^2 - 4) + 1/(1 + 1/((14^2 - 4) + 1/(1 + 1/((52^2 - 4) + 1/(1 + ...))))))).
(End)
a(2^n) = A003010(n). - John Blythe Dobson, Mar 10 2014
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 12*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
E.g.f.: 2*exp(2*x)*cosh(sqrt(3)*x). - Ilya Gutkovskiy, Apr 27 2016
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n*(n - k - 1)!/(k!*(n - 2*k)!)*4^(n - 2*k) for n >= 1. - Peter Luschny, May 10 2016
From Peter Bala, Oct 15 2019: (Start)
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; -1, 4].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
2*Sum_{n >= 1} 1/( a(n) - 6/a(n) ) = 1.
6*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 2/a(n) ) = 1.
8*Sum_{n >= 1} 1/( a(n) + 24/(a(n) - 12/(a(n))) ) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 8/(a(n) + 4/(a(n))) ) = 1.
Series acceleration formulas for sums of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/2 - 6*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 6)),
Sum_{n >= 1} 1/a(n) = 1/8 + 24*Sum_{n >= 1} 1/(a(n)*(a(n)^2 + 12)),
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/6 + 2*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 2)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 12)).
Sum_{n >= 1} 1/a(n) = ( theta_3(2-sqrt(3))^2 - 1 )/4 = 0.34770 07561 66992 06261 .... See Borwein and Borwein, Proposition 3.5 (i), p.91.
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - theta_3(sqrt(3)-2)^2 )/4. Cf. A003499 and A153415. (End)
a(n) = tan(Pi/12)^n + tan(5*Pi/12)^n. - Greg Dresden, Oct 01 2020
From Wolfdieter Lang, Sep 06 2021: (Start)
a(n) = S(n, 4) - S(n-2, 4) = 2*T(n, 2), for n >= 0, with S and T Chebyshev polynomials, with S(-1, x) = 0 and S(-2, x) = -1. S(n, 4) = A001353(n+1), for n >= -1, and T(n, 2) = A001075(n).
a(2*k) = A067902(k), a(2*k+1) = 4*A001570(k+1), for k >= 0. (End)
a(n) = sqrt(2 + 2*A011943(n+1)) = sqrt(2 + 2*A102344(n+1)), n>0. - Ralf Steiner, Sep 23 2021
Sum_{n>=1} arctan(3/a(n)^2) = Pi/6 - arctan(1/3) = A019673 - A105531 (Ohtskua, 2024). - Amiram Eldar, Aug 29 2024
MAPLE
A003500 := proc(n) option remember; if n <= 1 then 2*n+2 else 4*procname(n-1)-procname(n-2); fi;
end proc;
MATHEMATICA
a[0]=2; a[1]=4; a[n_]:= a[n]= 4a[n-1] -a[n-2]; Table[a[n], {n, 0, 23}]
LinearRecurrence[{4, -1}, {2, 4}, 30] (* Harvey P. Dale, Aug 20 2011 *)
Table[Round@LucasL[2n, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
PROG
(Sage) [lucas_number2(n, 4, 1) for n in range(0, 24)] # Zerinvary Lajos, May 14 2009
(Haskell)
a003500 n = a003500_list !! n
a003500_list = 2 : 4 : zipWith (-)
(map (* 4) $ tail a003500_list) a003500_list
-- Reinhard Zumkeller, Dec 17 2011
(PARI) x='x+O('x^99); Vec(-2*(-1+2*x)/(1-4*x+x^2)) \\ Altug Alkan, Apr 04 2016
(Magma) I:=[2, 4]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018
CROSSREFS
Cf. A011945 (areas), A334277 (perimeters).
Cf. this sequence (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, May 03 2000
Additional comments from Lekraj Beedassy, Feb 14 2002
STATUS
approved
a(n) = 4*a(n-1) - a(n-2) for n>1, a(0)=3, a(1)=9.
+10
11
3, 9, 33, 123, 459, 1713, 6393, 23859, 89043, 332313, 1240209, 4628523, 17273883, 64467009, 240594153, 897909603, 3351044259, 12506267433, 46674025473, 174189834459, 650085312363, 2426151414993, 9054520347609, 33791929975443
OFFSET
0,1
COMMENTS
y-values in the solutions to 3*x^2+6 = y^2. - Sture Sjöstedt, Nov 25 2011
Positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 18 = 0. - Colin Barker, Feb 04 2014
Positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 288 = 0. - Colin Barker, Feb 16 2014
FORMULA
G.f.: (3 -6*x +3*x^2)/((1-x)*(1-4*x+x^2)).
a(n) = sqrt(3/2)*(a^(n+1/2) + b^(n+1/2)), with a=2+sqrt(3) and b=2-sqrt(3).
a(n) = sqrt(3*(11 +12*A082840(n) +4*A082840(n)^2)).
a(n) = sqrt((3/2)*(A003500(2n+1) +2)).
a(n) - a(n-1) = 6*A001353(n).
a(n) == 3 (mod 6).
a(n) = 3 * A001835(n+1).
a(n) = 3*x(n) + 3*y(n) for x(n)= A001075(n) and y(n) = A001353(n) the solutions to x^2 - 3*y^2 = 1. - Greg Dresden and his Math 222 Linear Algebra class, Oct 05 2022
MAPLE
a:=proc(n) option remember; if n=0 then 3 elif n=1 then 9 else 4*a(n-1)-a(n-2); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Jan 21 2017
MATHEMATICA
CoefficientList[Series[(3-6x+3x^2)/((1-x)(1-4x+x^2)), {x, 0, 25}], x]
LinearRecurrence[{4, -1}, {3, 9}, 30] (* Harvey P. Dale, Aug 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3-6*x+3*x^2)/((1-x)*(1-4*x+x^2)) )); // G. C. Greubel, Feb 25 2019
(Sage) ((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
(GAP) a:=[3, 9];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Feb 25 2019
CROSSREFS
First differences of A005320.
Cf. A001834.
KEYWORD
nonn,easy
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Apr 14 2003
STATUS
approved
Array A(n,k) with all numbers m such that 3*m^2 +- 3^k is a square and their corresponding square roots, read by downward antidiagonals.
+10
5
0, 1, 1, 0, 2, 4, 3, 3, 7, 15, 0, 6, 12, 26, 56, 9, 9, 21, 45, 97, 209, 0, 18, 36, 78, 168, 362, 780, 27, 27, 63, 135, 291, 627, 1351, 2911, 0, 54, 108, 234, 504, 1086, 2340, 5042, 10864, 81, 81, 189, 405, 873, 1881, 4053, 8733, 18817, 40545
OFFSET
0,5
COMMENTS
Array is analogous to A228405 in goal and structure, with key differences.
Left column is A001353. Top row (not in OEIS) interleaves 0 with the powers of 3, as: 0, 1, 0, 3, 0, 9, 0, 27, 0, 81.
Either or both may be used as initializing values. See Formula section.
The left column is the second binomial transform of the top row. The intermediate transform sequence is A002605, not present in this array.
The columns of the array hold all values, in sequential order, of numbers m such that 3*m^2 + 3^k or 3*m^2 - 3^k are squares, and their corresponding square roots in the next column, which then form the "next round" of m values for column k+1.
For example: A(n,0) are numbers such that 3*m^2 + 1 are squares, the integer square roots of each are in A(n,1), which are then numbers m such that 3*m^2 - 3 are squares, with those square roots in A(n,2), etc. The sign alternates for each increment of k, etc. No integer square roots exist for the opposite sign in a given column, regardless of n.
Also, A(n,1) are values of m such that floor(m^2/3) is square, with the corresponding square roots given by A(n,0).
A(n,k)/A(n,k-2) = 3; A(n,k)/A(n,k-1) converges to sqrt(3) for large n.
A(n,k)/A(n-1,k) converges to 2 + sqrt(3) for large n.
Several ways of combining the first few columns give OEIS sequences:
A(n,0) + A(n,1) = A001835; A(n,1) + A(n,2)= A001834; A(n,2) + A(n,3) = A082841;
A(n,0)*A(n,1)/2 = A007655(n); A(n+2,0)*A(n+1,1) = A001922(n);
A(n,0)*A(n+1,1) = A001921(n); A(n,0)^2 + A(n,1)^2 = A103974(n);
A(n,1)^2 - A(n,0)^2 = A011922(n); (A(n+2,0)^2 + A(n+1,1)^2)/2 = A122770(n) = 2*A011916(n).
The main diagonal (without initial 0) = 2*A090018. The first subdiagonal = abs(A099842). First superdiagonal = A141041.
A001353 (in left column) are the only initializing set of numbers where the recursive square root equation (see below) produces exclusively integer values, for all iterations of k. For any other initial values only even iterations (at k = 2, 4, ...) produce integers.
LINKS
FORMULA
If using the left column and top row to initialize, then: A(n,k) = 2*A(n, k-1) - A(n-1, k-1).
If using only the top row to initialize, then: A(n,k) = 4*A(n-1,k) - A(n-2,k).
If using the left column to initialize, then: A(n,k) = sqrt(3*A(n,k-1) + (-3)^(k-1)), for all n, k > 0.
Other internal relationships that apply are: A(2*n-1, 2*k) = A(n,k)^2 - A(n-1,k)^2;
A(n+1,k) * A(n,k+1) - A(n+1, k+1) * A(n,k) = (-3)^k, for all n, k > 0.
A(n, 0) = A001353(n).
A(n, 1) = A001075(n).
A(n, 2) = A005320(n).
A(n, 3) = A151961(n).
A(1, k) = A038754(k).
A(n, n) = 2*A090018(n), for n > 0 (main diagonal).
A(n, n+1) = A141041(n-1) (superdiagonal).
A(n+1, n) = abs(A099842(n)) (subdiagonal).
From G. C. Greubel, Oct 09 2022: (Start)
T(n, 0) = (1/2)*(1-(-1)^n)*3^((n-1)/2).
T(n, 1) = A038754(n-1).
T(n, 2) = A228879(n-2).
T(2*n-1, n-1) = A141041(n-1).
T(2*n, n) = 2*A090018(n-1), n > 0.
T(n, n-4) = 3*A005320(n-4).
T(n, n-3) = 3*A001075(n-3).
T(n, n-2) = 3*A001353(n-2).
T(n, n-1) = A001075(n-1).
T(n, n) = A001353(n).
Sum_{k=0..n-1} T(n, k) = A084156(n).
Sum_{k=0..n} T(n, k) = A084156(n) + A001353(n). (End)
EXAMPLE
The array, A(n, k), begins as:
0, 1, 0, 3, 0, 9, 0, 27, ... see A000244;
1, 2, 3, 6, 9, 18, 27, 54, ... A038754;
4, 7, 12, 21, 36, 63, 108, 189, ... A228879;
15, 26, 45, 78, 135, 234, 405, 702, ...
56, 97, 168, 291, 504, 873, 1512, 2619, ...
209, 362, 627, 1086, 1881, 3258, 5643, 9774, ...
780, 1351, 2340, 4053, 7020, 12159, 21060, 36477, ...
Antidiagonal triangle, T(n, k), begins as:
0;
1, 1;
0, 2, 4;
3, 3, 7, 15;
0, 6, 12, 26, 56;
9, 9, 21, 45, 97, 209;
0, 18, 36, 78, 168, 362, 780;
27, 27, 63, 135, 291, 627, 1351, 2911;
0, 54, 108, 234, 504, 1086, 2340, 5042, 10864;
81, 81, 189, 405, 873, 1881, 4053, 8733, 18817, 40545;
MATHEMATICA
A[n_, k_]:= If[k<0, 0, If[k==0, ChebyshevU[n-1, 2], 2*A[n, k-1] - A[n-1, k-1]]];
T[n_, k_]:= A[k, n-k];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 09 2022 *)
PROG
(Magma)
function A(n, k)
if k lt 0 then return 0;
elif n eq 0 then return Round((1/2)*(1-(-1)^k)*3^((k-1)/2));
elif k eq 0 then return Evaluate(ChebyshevSecond(n), 2);
else return 2*A(n, k-1) - A(n-1, k-1);
end if; return A;
end function;
A227418:= func< n, k | A(k, n-k) >;
[A227418(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Oct 09 2022
(SageMath)
def A(n, k):
if (k<0): return 0
elif (k==0): return chebyshev_U(n-1, 2)
else: return 2*A(n, k-1) - A(n-1, k-1)
def A227418(n, k): return A(k, n-k)
flatten([[A227418(n, k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Oct 09 2022
KEYWORD
nonn,tabl,changed
AUTHOR
Richard R. Forberg, Sep 02 2013
EXTENSIONS
Offset corrected by G. C. Greubel, Oct 09 2022
STATUS
approved
Numbers k such that m = 2*k is the middle side in a Heronian triangle with sides m - 11, m, m + 11.
+10
4
13, 14, 22, 38, 43, 77, 139, 158, 286, 518, 589, 1067, 1933, 2198, 3982, 7214, 8203, 14861, 26923, 30614, 55462, 100478, 114253, 206987, 374989, 426398, 772486, 1399478, 1591339, 2882957, 5222923, 5938958, 10759342, 19492214, 22164493, 40154411, 72745933
OFFSET
0,1
COMMENTS
a(n) gives values of x satisfying 3*x^2 - y^2 = 363; the corresponding y values are given by A296796.
FORMULA
From Colin Barker, Dec 22 2017: (Start)
G.f.: (13 + 14*x + 22*x^2 - 14*x^3 - 13*x^4 - 11*x^5) / (1 - 4*x^3 + x^6).
a(n) = 4*a(n-3) - a(n-6) for n>5.
(End)
EXAMPLE
The smallest triangle of this type has following sides: 15, 26, 37 has the altitude 12 and is a part of the Pythagorean triangle with sides : 12, 35, 37.
MATHEMATICA
CoefficientList[Series[(13 + 14 x + 22 x^2 - 14 x^3 - 13 x^4 - 11 x^5)/(1 - 4 x^3 + x^6), {x, 0, 36}], x] (* Michael De Vlieger, Dec 22 2017 *)
PROG
(PARI) Vec((13 + 14*x + 22*x^2 - 14*x^3 - 13*x^4 - 11*x^5) / (1 - 4*x^3 + x^6) + O(x^40)) \\ Colin Barker, Dec 22 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sture Sjöstedt, Dec 20 2017
EXTENSIONS
More terms from Colin Barker, Dec 22 2017
STATUS
approved
Indices of the triangular numbers which are also centered triangular number.
+10
2
1, 4, 16, 61, 229, 856, 3196, 11929, 44521, 166156, 620104, 2314261, 8636941, 32233504, 120297076, 448954801, 1675522129, 6253133716, 23337012736, 87094917229, 325042656181, 1213075707496, 4527260173804, 16895964987721
OFFSET
1,2
COMMENTS
Also, indices of the triangular numbers which are sums of three consecutive triangular numbers (see A129803).
LINKS
A. Kozikowska, Topological classes of statically determinate beams with arbitrary number of supports, JOURNAL OF THEORETICAL AND APPLIED MECHANICS 49, 4, pp. 1079-1100, Warsaw 2011; (see Eq. 5.18). - N. J. A. Sloane, Dec 17 2011.
FORMULA
a(n+2)=4*a(n+1)-a(n)+1.
a(n+1)=2*a(n)+0.5+0.5*(12*a(n)^2+12*a(n)-15)^0.5.
G.f.: x*(1-x+x^2)/(1-x)/(1-4*x+x^2). - R. J. Mathar, Oct 24 2007
a(n)-a(n-1)= A005320(n-1). - R. J. Mathar, Mar 14 2016
MATHEMATICA
LinearRecurrence[{5, -5, 1}, {1, 4, 16}, 30] (* Harvey P. Dale, Aug 29 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Oct 09 2007
STATUS
approved
Values of y solving x^2 = floor(y^2/3 + y).
+10
2
0, 1, 4, 9, 28, 73, 144, 409, 1036, 2025, 5716, 14449, 28224, 79633, 201268, 393129, 1109164, 2803321, 5475600, 15448681, 39045244, 76265289, 215172388, 543830113, 1062238464, 2996964769, 7574576356, 14795073225, 41742334396, 105500238889, 206068786704, 581395716793, 1469428768108
OFFSET
1,3
COMMENTS
The corresponding values of x are given by A232771.
a(n) + 3 gives the values of y solving x^2 = floor(y^2/3 - y), and yields the same values for x.
a(3n+1) are squares whose square roots are given by A005320.
Let b(n) equal the second differences of a(n) where b(1) = 2. Then, for n>0, b(3n-1) = b(3n-2) = 2* A001570(n+1); b(3n)= 2*A011943(n); and b(3n) = (b(3n+1) + b(3n-1))/2.
FORMULA
Empirical g.f.: -x^2*(x+1)*(x^2+x+1)^2 / ((x-1)*(x^6-14*x^3+1)). - Colin Barker, Dec 30 2014
PROG
(PARI) is(n)=issquare(n^2\3+n)
print1("0, 1"); for(x=3, 99, y=round(sqrt(3)*x-3/2); if(is(y), print1(", "y))) \\ Charles R Greathouse IV, Dec 09 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Richard R. Forberg, Nov 29 2013
EXTENSIONS
a(23) corrected by Colin Barker, Dec 30 2014
STATUS
approved
Numerators of the other-side convergents to sqrt(3).
+10
2
2, 3, 7, 12, 26, 45, 97, 168, 362, 627, 1351, 2340, 5042, 8733, 18817, 32592, 70226, 121635, 262087, 453948, 978122, 1694157, 3650401, 6322680, 13623482, 23596563, 50843527, 88063572, 189750626, 328657725, 708158977, 1226567328, 2642885282, 4577611587
OFFSET
0,1
COMMENTS
Suppose that a positive irrational number r has continued fraction [a(0), a(1), ...]. Define sequences p(i), q(i), P(i), Q(i) from the numerators and denominators of finite continued fractions as follows:
p(i)/q(i) = [a(0), a(1), ..., a(i)] and
P(i)/Q(i) = [a(0), a(1), ..., a(i) + 1].
The fractions p(i)/q(i) are the convergents to r, and the fractions P(i)/Q(i) are introduced here as the "other-side convergents" to r, because p(2k)/q(2k) < r < P(2k)/Q(2k) and P(2k+1)/Q(2k+1) < r < p(2k+1)/q(2k+1), for k >= 0.
Closeness of P(i)/Q(i) to r is indicated by |r - P(i)/Q(i)| < |p(i)/q(i) - P(i)/Q(i)| = 1/(q(i)Q(i)), for i >= 0.
FORMULA
p(i)*Q(i) - P(i)*q(i) = (-1)^(i+1), for i >= 0, where a(i) = P(i).
a(n) = 4*a(n-2) - a(n-4) for n>3. - Colin Barker, Jul 21 2015
G.f.: -(x^2-3*x-2) / (x^4-4*x^2+1). - Colin Barker, Jul 21 2015
a(n) = 3^(n/2 - t + 1)*((2 + sqrt(3))^t + (-1)^n*(2 - sqrt(3))^t)/2, where t = floor(n/2) + 1. - Ridouane Oudra, Aug 03 2021
EXAMPLE
For r = sqrt(3), the first 7 other-side convergents are 4, 25/8, 355/113, 688/219, 104348/33215, 208341/66317, 312689/99532. A comparison of convergents with other-side convergents:
i p(i)/q(i) P(i)/Q(i) p(i)*Q(i) - P(i)*q(i)
0 1/1 < sqrt(3) < 2/1 -1
1 2/1 > sqrt(3) > 3/2 1
2 5/3 < sqrt(3) < 7/4 -1
3 7/4 > sqrt(3) > 12/7 1
4 19/11 < sqrt(3) < 26/15 -1
5 26/15 > sqrt(3) > 45/26 1
MATHEMATICA
r = Sqrt[3]; a[i_] := Take[ContinuedFraction[r, 35], i];
b[i_] := ReplacePart[a[i], i -> Last[a[i]] + 1];
t = Table[FromContinuedFraction[b[i]], {i, 1, 35}]
v = Numerator[t]
PROG
(PARI) Vec(-(x^2-3*x-2)/(x^4-4*x^2+1) + O(x^50)) \\ Colin Barker, Jul 21 2015
CROSSREFS
Cf. A002530, A002531, A259592 (denominators).
Cf. A001075 (even bisection), A005320 (odd bisection).
KEYWORD
nonn,easy,frac
AUTHOR
Clark Kimberling, Jul 20 2015
STATUS
approved
Numbers k such that m=2*k is the middle side in a Heronian triangle with sides m-13, m , m+13.
+10
2
13, 14, 19, 26, 37, 62, 91, 134, 229, 338, 499, 854, 1261, 1862, 3187, 4706, 6949, 11894, 17563, 25934, 44389, 65546, 96787, 165662, 244621, 361214, 618259, 912938, 1348069, 2307374, 3407131, 5031062, 8611237, 12715586, 18776179, 32137574, 47455213, 70073654
OFFSET
0,1
COMMENTS
a(n) gives values of x satisfying 3*x^2 - y^2 = 507; corresponding y values are given by A293846.
FORMULA
a(n) = 4*a(n-3)-a(n-6), a(1)= 13, a(2)= 14, a(3)= 19, a(4)= 26, a(5)= 37, a(6)= 62.
G.f.: (13 + 14*x + 19*x^2 - 26*x^3 - 19*x^4 - 14*x^5) / (1 - 4*x^3 + x^6). - Colin Barker, Dec 27 2017
EXAMPLE
The smallest triangle of this type with 3 acute angles has the sides: 61, 74, 87.
MATHEMATICA
LinearRecurrence[{0, 0, 4, 0, 0, -1}, {13, 14, 19, 26, 37, 62}, 40] (* Harvey P. Dale, Oct 10 2023 *)
PROG
(PARI) Vec((13 + 14*x + 19*x^2 - 26*x^3 - 19*x^4 - 14*x^5) / (1 - 4*x^3 + x^6) + O(x^40)) \\ Colin Barker, Dec 27 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sture Sjöstedt, Dec 27 2017
STATUS
approved

Search completed in 0.022 seconds