proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
First position of 0 in each row is A377037.
A000040 lists the primes, differences A001223, second seconds A036263.
A008578 lists the noncomposites, differences A075526, seconds A036263 with 0 prepended.
Cf. `A054819, A065310, A065890, `A084758, A173390, `A350004, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680.
allocated for Gus Wiseman
Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the composite numbers (A002808).
4, 6, 2, 8, 2, 0, 9, 1, -1, -1, 10, 1, 0, 1, 2, 12, 2, 1, 1, 0, -2, 14, 2, 0, -1, -2, -2, 0, 15, 1, -1, -1, 0, 2, 4, 4, 16, 1, 0, 1, 2, 2, 0, -4, -8, 18, 2, 1, 1, 0, -2, -4, -4, 0, 8, 20, 2, 0, -1, -2, -2, 0, 4, 8, 8, 0, 21, 1, -1, -1, 0, 2, 4, 4, 0, -8, -16, -16
0,1
Row n is the k-th differences of A002808 = the composite numbers.
A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A002808(i+k).
Array begins:
n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9:
----------------------------------------------------------
k=0: 4 6 8 9 10 12 14 15 16
k=1: 2 2 1 1 2 2 1 1 2
k=2: 0 -1 0 1 0 -1 0 1 0
k=3: -1 1 1 -1 -1 1 1 -1 -1
k=4: 2 0 -2 0 2 0 -2 0 2
k=5: -2 -2 2 2 -2 -2 2 2 -2
k=6: 0 4 0 -4 0 4 0 -4 -1
k=7: 4 -4 -4 4 4 -4 -4 3 10
k=8: -8 0 8 0 -8 0 7 7 -29
k=9: 8 8 -8 -8 8 7 0 -36 63
Triangle begins:
4
6 2
8 2 0
9 1 -1 -1
10 1 0 1 2
12 2 1 1 0 -2
14 2 0 -1 -2 -2 0
15 1 -1 -1 0 2 4 4
16 1 0 1 2 2 0 -4 -8
18 2 1 1 0 -2 -4 -4 0 8
20 2 0 -1 -2 -2 0 4 8 8 0
21 1 -1 -1 0 2 4 4 0 -8 -16 -16
nn=9;
t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1, PrimeQ]&, 4, 2*nn], k], nn], {k, 0, nn}]
Initial rows: A002808, A073783, A073445.
The version for primes is A095195 or A376682.
A version for partitions is A175804, cf. A053445, A281425, A320590.
Triangle row-sums are A377034, absolute version A377035.
Column n = 1 is A377036, for primes A007442 or A030016.
First position of 0 is A377037.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, second A036263.
A008578 lists the noncomposites, differences A075526, seconds A036263 with 0 prepended.
Cf. A018252, `A064113, `A065890, `A084758, `A173390, `A333214, `A333215, `A333254, `A350004, A376680.
Cf: `A054819, A065310, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative).
allocated
sign,tabl
Gus Wiseman, Oct 17 2024
approved
editing
allocating
allocated
allocated for Gus Wiseman
allocating
approved