[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088699 revision #37

A088699
Array read by antidiagonals of coefficients of generating function exp(x)/(1-y-xy).
15
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 34, 21, 6, 1, 1, 7, 31, 73, 73, 31, 7, 1, 1, 8, 43, 136, 209, 136, 43, 8, 1, 1, 9, 57, 229, 501, 501, 229, 57, 9, 1, 1, 10, 73, 358, 1045, 1546, 1045, 358, 73, 10, 1, 1, 11, 91, 529, 1961, 4051, 4051, 1961
OFFSET
0,5
COMMENTS
A(n,m) is the number of ways to pair the elements of two sets (with respectively n and m elements), where each element of either set may be paired with zero or one elements of the other set; number of n X m matrices of zeros and ones with at most one one in each row and column. E.g., A(2,2)=7 because we can pair {A,B} with {C,D} as {AB,CD}, {AC,BD}, {AC,B,D}, {AD,B,C}, {BC,A,D}, {BD,A,C}, or {A,B,C,D}. - Franklin T. Adams-Watters, Feb 06 2006
Compare with A086885. - Peter Bala, Sep 17 2008
A(n,m) is the number of vertex covers and independent vertex sets in the n X m lattice (rook) graph K_n X K_m. - Andrew Howroyd, May 14 2017
LINKS
Eric Weisstein's World of Mathematics, Rook Graph
Eric Weisstein's World of Mathematics, Vertex Cover
Wikipedia, Rook polynomial
FORMULA
E.g.f.: exp(x)/(1-y-xy)=Sum_{i, j} A(i, j) y^j x^i/i!.
A(i, j) = A(i-1, j)+j*A(i-1, j-1)+(i==0) = A(j, i).
T(n, k) = sum{j=0..k, C(n, k-j)*k!/j!} = sum{j=0..k, (k-j)!*C(k, j)C(n, k-j)}. - Paul Barry, Nov 14 2005
A(i,j) = sum_k C(i,k)*C(j,k)*k!. E.g.f.: sum_{i,j} a(i,j)*x^i/i!*y^j/j! = e^{x+y+xy}. - Franklin T. Adams-Watters, Feb 06 2006
The LDU factorization of this array, formatted as a square array, is P * D * transpose(P), where P is Pascal's triangle A007318 and D = diag(0!, 1!, 2!, ... ). Compare with A099597. - Peter Bala, Nov 06 2007
A(i,j) = (-1)^-i HypergeometricU(-i, 1 - i + j, -1). - Eric W. Weisstein, May 10 2017
EXAMPLE
1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9
1 3 7 13 21 31 43 57 73
1 4 13 34 73 136 229 358 529
1 5 21 73 209 501 1045 1961 3393
1 6 31 136 501 1546 4051 9276 19081
1 7 43 229 1045 4051 13327 37633 93289
1 8 57 358 1961 9276 37633 130922 394353
1 9 73 529 3393 19081 93289 394353 1441729
MAPLE
A088699 := proc(i, j)
add(binomial(i, k)*binomial(j, k)*k!, k=0..min(i, j)) ;
end proc: # R. J. Mathar, Feb 28 2015
MATHEMATICA
max = 11; se = Series[E^x/(1 - y - x*y), {x, 0, max}, {y, 0, max}] // Normal // Expand; a[i_, j_] := SeriesCoefficient[se, {x, 0, i}, {y, 0, j}]*i!; Flatten[ Table[ a[i - j, j], {i, 0, max}, {j, 0, i}]] (* Jean-François Alcover, May 15 2012 *)
PROG
(PARI) A(i, j)=if(i<0 || j<0, 0, i!*polcoeff(exp(x+x*O(x^i))*(1+x)^j, i))
(PARI) A(i, j)=if(i<0 || j<0, 0, i!*polcoeff(exp(x/(1-x)+x*O(x^i))*(1-x)^(i-j-1), i))
(PARI) A(i, j)=local(M); if(i<0 || j<0, 0, M=matrix(j+1, j+1, n, m, if(n==m, 1, if(n==m+1, m))); (M^i)[j+1, ]*vectorv(j+1, n, 1)) /* Michael Somos, Jul 03 2004 */
CROSSREFS
Row sums give A081124.
Main diagonal is A002720.
Sequence in context: A108350 A086617 A094526 * A101515 A327913 A028657
KEYWORD
nonn,tabl
AUTHOR
Michael Somos, Oct 08 2003
STATUS
proposed