[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A379785
For n >= 2, let b(n) = 1 if A379652(n) is 3 mod 4, 0 if A379652(n) is 1 mod 4; form the RUNS transform of {b(n), n >= 2}.
3
1, 8, 1, 1, 2, 1, 2, 3, 1, 3, 2, 4, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 1, 5, 2, 2, 3, 3, 4, 4, 1, 1, 3, 2, 1, 2, 1, 3, 1, 6, 1, 3, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 15, 1, 3, 3, 1, 5, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 4, 3, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 7, 2, 2
OFFSET
1,2
COMMENTS
Has the same relationship to A379652 as A379783 does to A379899. See A379783 for further information.
LINKS
MATHEMATICA
nn = 400; c[_] := True; j = 2; q = 0; r = 1;
Rest@ Reap[Do[m = 2*j + 1;
While[Set[k, SelectFirst[FactorInteger[m][[All, 1]], c]];
! IntegerQ[k], m = 2*m + 1];
c[k] = False; j = k;
If[# == r, q++, r = #; Sow[q]; q = 1] &[(Mod[k, 4] - 1)/2],
{n, nn}] ][[-1, 1]] (* Michael De Vlieger, Jan 11 2025 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 11 2025
STATUS
approved