[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A375537
Square array A(n, k) (n, k >= 1) read by antidiagonals in ascending order: A(n, k) = Max_{i = 1..n} v_prime(i)(k), where v_p(k) is the p-adic valuation of k.
3
0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 2, 1, 1, 0, 3, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 1
OFFSET
1,10
COMMENTS
For a given n, A(n, k) is the sequence that gives the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor of k.
FORMULA
A(n, k) = Max_{i=1..n} A249344(i, k).
A(n, k) = A051903(k) for n >= A000720(A006530(k)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{i=1..m} A(n, i) = A375538(n)/A375539(n).
EXAMPLE
Array begins:
n | n-th row
---+-----------------------------
1 | 0, 1, 0, 2, 0, 1, 0, 3, 0, 1
2 | 0, 1, 1, 2, 0, 1, 0, 3, 2, 1
3 | 0, 1, 1, 2, 1, 1, 0, 3, 2, 1
4 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
5 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
6 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
7 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
8 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
9 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
10 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
MATHEMATICA
A[n_, k_] := Max[IntegerExponent[k, Prime[Range[n]]]]; Table[A[n - k + 1, k], {n, 1, 14}, {k, 1 n}] // Flatten
PROG
(PARI) A(n, k) = vecmax(apply(x -> valuation(k, x), primes(n)));
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Amiram Eldar, Aug 19 2024
STATUS
approved