[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A363808
Number of divisors of n of the form 7*k + 6.
11
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0
OFFSET
1,48
LINKS
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
G.f.: Sum_{k>0} x^(6*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-1)/(1 - x^(7*k-1)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(6,7) - (1 - gamma)/7 = -0.218328..., gamma(6,7) = -(psi(6/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 6 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, d%7==6);
CROSSREFS
Cf. A284105.
Cf. A001620, A016630, A354632 (psi(6/7)).
Sequence in context: A336107 A350251 A367783 * A227761 A037188 A276847
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 23 2023
STATUS
approved