[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362403
Number of times that the number A362402(n) occurs as a sum of divisors that have a square factor (A162296).
2
0, 1, 2, 3, 5, 7, 9, 10, 13, 15, 16, 20, 22, 23, 28, 34, 46, 53, 60, 62, 78, 81, 113, 115, 122, 132, 154, 184, 185, 222, 248, 254, 343, 346, 350, 354, 497, 569, 701, 711, 860, 941, 1088, 1221, 1222, 1235, 1263, 1306, 1572, 1721, 1737, 1948, 2191, 2315, 2418, 2877
OFFSET
1,3
LINKS
MATHEMATICA
s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; s[1] = 0; seq[max_] := Module[{v = Select[Array[s, max], 0 < # <= max &], sq = {0}, t, tmax = 0}, t = Sort[Tally[v]]; Do[If[t[[k]][[2]] > tmax, tmax = t[[k]][[2]]; AppendTo[sq, t[[k]][[2]]]], {k, 1, Length[t]}]; sq]; seq[10^5]
PROG
(PARI) s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) - prod(i = 1, #f~, f[i, 1] + 1); }
lista(kmax) = {my(v = vector(kmax), vmax = 0, i); for(k=1, kmax, i = s(k); if(i > 0 && i <= kmax, v[i]++)); print1(0, ", "); for(k=1, kmax, if(v[k] > vmax, vmax = v[k]; print1(v[k], ", "))); }
CROSSREFS
Similar sequences: A131934, A101373, A206027, A238896.
Sequence in context: A044918 A103635 A133677 * A075750 A331232 A219050
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 18 2023
STATUS
approved