[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A360712
Expansion of Sum_{k>0} (k * x * (1 + k*x^k))^k.
5
1, 5, 27, 272, 3125, 46915, 823543, 16781312, 387421218, 10000078125, 285311670611, 8916102153177, 302875106592253, 11112006865911623, 437893890381640625, 18446744074783358976, 827240261886336764177, 39346408075327943829273
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} d^(d+n/d-1) * binomial(d,n/d-1).
If p is an odd prime, a(p) = p^p.
MATHEMATICA
a[n_] := DivisorSum[n, #^(#+n/#-1) * Binomial[#, n/# - 1] &]; Array[a, 20] (* Amiram Eldar, Aug 09 2023 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x*(1+k*x^k))^k))
(PARI) a(n) = sumdiv(n, d, d^(d+n/d-1)*binomial(d, n/d-1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 17 2023
STATUS
approved