[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A365498
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).
4
1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 1, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 2, 1, 4, 2, 8, 4, 4, 4
OFFSET
1,2
COMMENTS
The number of unitary divisors of n that are cubefree numbers (A004709). - Amiram Eldar, Sep 06 2023
LINKS
Jon Maiga, Computer-generated formulas for A365498, Sequence Machine.
FORMULA
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085026313185459506482223745141452711510108346133288...,
f'(1) = f(1) * Sum_{p prime} (-4 + 3*p + 2*p^2) * log(p) / (1 - p - p^2 + p^4) = f(1) * 1.4525924794451595590371439593828547341482465114411929136723476679...
and gamma is the Euler-Mascheroni constant A001620.
Multiplicative with a(p^e) = 2 if e <= 2, and 1 otherwise. - Amiram Eldar, Sep 06 2023
From Vaclav Kotesovec, Jan 27 2025: (Start)
Following formulas have been conjectured for this sequence by Sequence Machine, with each one giving the first 1000000 terms correctly:
a(n) = A056671(n) * A368885(n).
a(n) = A034444(n) / A368248(n).
a(n) = A158522(n) / A307428(n).
a(n) = A369310(n) / A190867(n).
a(n) = A286324(n) / A368172(n). (End)
MATHEMATICA
f[p_, e_] := If[e <= 2, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 06 2023 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * (1 + X - X^3))[n], ", "))
KEYWORD
nonn,easy,mult
AUTHOR
Vaclav Kotesovec, Sep 06 2023
STATUS
approved