[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A365005
Number of ways to write 2 as a nonnegative linear combination of a strict integer partition of n.
1
0, 1, 1, 2, 1, 2, 4, 4, 5, 6, 9, 10, 13, 15, 19, 23, 28, 33, 40, 47, 56, 67, 78, 92, 108, 126, 146, 171, 198, 229, 264, 305, 350, 403, 460, 527, 603, 687, 781, 889, 1009, 1144, 1295, 1464, 1653, 1866, 2101, 2364, 2659, 2984, 3347, 3752, 4200, 4696, 5248, 5858
OFFSET
0,4
COMMENTS
A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
EXAMPLE
The a(6) = 4 ways:
0*5 + 2*1
0*4 + 1*2
0*3 + 0*2 + 2*1
0*3 + 1*2 + 0*1
MATHEMATICA
combs[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 0, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Join@@Table[combs[2, ptn], {ptn, Select[IntegerPartitions[n], UnsameQ@@#&]}]], {n, 0, 30}]
CROSSREFS
For 1 instead of 2 we have A096765.
Column k = n - 2 of A116861.
Row n = 2 of A364916.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.
Sequence in context: A108802 A023673 A132965 * A022597 A073252 A134005
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 26 2023
STATUS
approved