OFFSET
0,4
COMMENTS
A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
EXAMPLE
The a(6) = 4 ways:
0*5 + 2*1
0*4 + 1*2
0*3 + 0*2 + 2*1
0*3 + 1*2 + 0*1
MATHEMATICA
combs[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 0, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Join@@Table[combs[2, ptn], {ptn, Select[IntegerPartitions[n], UnsameQ@@#&]}]], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 26 2023
STATUS
approved