OFFSET
1,3
LINKS
Tyma Gaidash, John Barber, and Steven Clark, How to evaluate Sum_{x=0..oo} erfc(x) = 1.1619990479471263635323...?, Mathematics StackExchange, 2021.
Eric Weisstein's World of Mathematics, Dawson's Integral.
Eric Weisstein's World of Mathematics, Erfc.
Wikipedia, Dawson function.
Wikipedia, Error function.
FORMULA
Equals 1 + (2/Pi) * Integral_{x>=1} floor(x) * exp(-x^2) dx.
Equals 1/2 + 1/sqrt(Pi) + (4/sqrt(Pi)) * Sum_{k>=1} D(Pi*k)/(Pi*k), where D(x) is the Dawson function.
Equals (2/Pi)*Integral_{x=0..oo} (exp(x) - cos(x))*sin((x^2)/2)/(x*(cosh(x) - cos(x))) dx. - Velin Yanev, Oct 11 2024
EXAMPLE
1.16199904794712636353230832245579717116634350622586...
MAPLE
evalf(sum(erfc(k), k = 0 .. infinity), 120)
MATHEMATICA
RealDigits[N[Sum[Erfc[k], {k, 0, Infinity}], 120]][[1]]
PROG
(PARI) sumpos(k = 0, erfc(k))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jul 30 2023
STATUS
approved