[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A364073
Triangle read by rows: T(n, k) = Sum_{d=0..n-k} binomial(n, d)*StirlingS2(n-d, k)*624^(n-d-k), with 0 <= k <= n.
3
1, 1, 1, 1, 626, 1, 1, 391251, 1875, 1, 1, 244531876, 2733126, 3748, 1, 1, 152832422501, 3658206250, 9753130, 6245, 1, 1, 95520264063126, 4721932028751, 21925818740, 25346895, 9366, 1, 1, 59700165039453751, 5993213367973125, 45788990528771, 85217015555, 54578181, 13111, 1
OFFSET
0,5
COMMENTS
T(n, k) is the number of 625-subgroups of R^n which have dimension k, where R^n is a near-vector space over a proper nearfield R.
LINKS
Prudence Djagba and Jan Hązła, Combinatorics of subgroups of Beidleman near-vector spaces, arXiv:2306.16421 [math.RA], 2023. See pp. 7-9.
EXAMPLE
The triangle begins:
1;
1, 1;
1, 626, 1;
1, 391251, 1875, 1;
1, 244531876, 2733126, 3748, 1;
1, 152832422501, 3658206250, 9753130, 6245, 1;
...
MATHEMATICA
T[n_, k_]:=Sum[Binomial[n, d]StirlingS2[n-d, k]624^(n-d-k), {d, 0, n-k}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A000012 (k=0), A364070 (row sums), A364071, A364072.
Sequence in context: A120320 A013837 A050448 * A045171 A345513 A345766
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Jul 04 2023
STATUS
approved