OFFSET
0,5
COMMENTS
T(n, k) is the number of 625-subgroups of R^n which have dimension k, where R^n is a near-vector space over a proper nearfield R.
LINKS
Prudence Djagba and Jan Hązła, Combinatorics of subgroups of Beidleman near-vector spaces, arXiv:2306.16421 [math.RA], 2023. See pp. 7-9.
EXAMPLE
The triangle begins:
1;
1, 1;
1, 626, 1;
1, 391251, 1875, 1;
1, 244531876, 2733126, 3748, 1;
1, 152832422501, 3658206250, 9753130, 6245, 1;
...
MATHEMATICA
T[n_, k_]:=Sum[Binomial[n, d]StirlingS2[n-d, k]624^(n-d-k), {d, 0, n-k}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}]//Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Jul 04 2023
STATUS
approved