[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A337161
Square array read by antidiagonals: T(n,k) is the number of simple labeled graphs G with vertex set V(G) = {v_1,...,v_n} along with a (coloring) function C:V(G) ->[k] such that v_i adjacent to v_j implies C(v_i) != C(v_j) and i<j implies C(v_i) <= C(v_j); n>=0, k>=0.
0
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 10, 1, 0, 1, 5, 16, 35, 34, 1, 0, 1, 6, 25, 84, 195, 162, 1, 0, 1, 7, 36, 165, 644, 1635, 1090, 1, 0, 1, 8, 49, 286, 1605, 7620, 21187, 10370, 1, 0, 1, 9, 64, 455, 3366, 24389, 143748, 430467, 139522, 1, 0, 1, 10, 81, 680, 6279, 62310, 599685, 4412164, 13812483, 2654722, 1, 0, 1, 11, 100, 969, 10760, 136871, 1882054, 24413445, 223233540, 702219779, 71435266, 1, 0
OFFSET
0,8
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Vol I, Second Edition, Section 3.18.
FORMULA
Let e(x) = Sum_{n>=0} x^n/2^binomial(n,2). Then e(x)^k = Sum_{n>=0} Z_n(k)*x^n/2^biomial(n,2) and T(n,k) = Z_n(k). Z_n(k) is the zeta polynomial of the class of posets described in A117402.
EXAMPLE
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 4, 9, 16, 25, 36, ...
0, 1, 10, 35, 84, 165, 286, ...
0, 1, 34, 195, 644, 1605, 3366, ...
0, 1, 162, 1635, 7620, 24389, 62310, ...
0, 1, 1090, 21187, 143748, 599685, 1882054, ...
MATHEMATICA
nn = 6; e[x_] := Sum[x^n/(2^Binomial[n, 2]), {n, 0, nn}];
Table[Table[2^Binomial[n, 2], {n, 0, nn}] PadRight[CoefficientList[Series[e[x]^k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Transpose // Grid
CROSSREFS
Cf. A322280, A117402 (column k=2).
Sequence in context: A210391 A071921 A003992 * A246118 A171882 A214075
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jan 28 2021
STATUS
approved