[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335823
Triangle read by rows: A080779 with rows reversed.
0
1, 1, 1, 2, 3, 1, 6, 12, 6, 0, 24, 60, 40, 0, -4, 120, 360, 300, 0, -60, 0, 720, 2520, 2520, 0, -840, 0, 120, 5040, 20160, 23520, 0, -11760, 0, 3360, 0, 40320, 181440, 241920, 0, -169344, 0, 80640, 0, -12096, 362880, 1814400, 2721600, 0, -2540160, 0, 1814400, 0, -544320, 0
OFFSET
1,4
FORMULA
T(n,k) = n!*(n-1)*(n-2)*...*(n-k+1)*(-1)^k*Bk/k! where Bk is a Bernoulli number and T(n,0) = (n-1)! and T(n,m) = 0 if m >= n.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 1;
6, 12, 6, 0;
24, 60, 40, 0, -4;
...
MATHEMATICA
Table[If[k == 0, (n - 1)!, n!*Product[n - j, {j, k - 1}]*(-1)^k*BernoulliB[k]/k!], {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Jun 27 2020 *)
PROG
(PARI) T(n, k) = if (k==0, (n-1)!, n!*prod(j=1, k-1, n-j)*(-1)^k*bernfrac(k)/k!);
tabl(nn) = for(n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jun 25 2020
CROSSREFS
Cf. A000142 (row sums).
Cf. A080779 (same triangle with rows reversed).
Cf. A027641/A027642 (Bernoulli numbers).
Sequence in context: A334951 A263634 A135894 * A247500 A375504 A075263
KEYWORD
sign,tabl
AUTHOR
John O. Oladokun, Jun 25 2020
STATUS
approved