[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A335007
Decimal expansion of 2*(gamma - zeta'(2)/zeta(2)) - 1, where gamma is the Euler-Mascheroni constant.
0
1, 2, 9, 4, 3, 5, 3, 3, 1, 5, 9, 9, 2, 1, 3, 1, 3, 3, 4, 0, 1, 2, 7, 5, 2, 9, 0, 0, 2, 0, 4, 2, 6, 4, 8, 6, 6, 8, 9, 1, 2, 8, 3, 2, 3, 3, 4, 9, 3, 7, 0, 9, 1, 5, 6, 7, 2, 7, 9, 2, 9, 1, 9, 0, 6, 4, 5, 5, 7, 0, 0, 0, 8, 2, 8, 8, 8, 1, 0, 5, 5, 5, 4, 4, 9, 6, 2
OFFSET
1,2
LINKS
Eckford Cohen, The number of unitary divisors of an integer, The American Mathematical Monthly, Vol. 67, No. 9 (1960), pp. 879-880.
FORMULA
Equals lim_{k->oo} ((zeta(2)/k)*A064608(k) - log(k)) where A064608 is the partial sums of the number of unitary divisors (A034444).
Equals 2*A001620 + 2*A073002/A013661 - 1 = 2*A335006 - 1.
EXAMPLE
1.2943533159921313340127529002042648668912832334937...
MATHEMATICA
RealDigits[2*EulerGamma - 2*Zeta'[2]/Zeta[2] - 1, 10, 100][[1]]
PROG
(PARI) 2*Euler - 2*zeta'(2)/zeta(2) - 1 \\ Michel Marcus, May 19 2020
CROSSREFS
Cf. A001620 (gamma), A013661 (zeta(2)), A034444, A064608, A073002 (-zeta'(2)), A147533, A335006.
Sequence in context: A011067 A135008 A200014 * A248968 A097881 A019758
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, May 19 2020
STATUS
approved