[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328963
Smallest k such that n = sigma_0(k) - ((bigomega(k)-1)*omega(k)), where sigma_0 = A000005, omega = A001221, bigomega = A001222.
11
1, 2, 36, 72, 144, 180, 576, 420, 360, 864, 1296, 720, 36864, 1080, 1440, 1260, 5184, 1800, 2160, 3360, 5760, 15552, 4620, 2520, 150994944, 6480, 5400, 13440, 8640, 6300, 9663676416, 5040, 12960, 9240, 331776, 7560, 186624, 248832, 34560, 10080, 1327104, 13860
OFFSET
1,2
COMMENTS
a(n) = smallest k for which A328959(k) = n-2. a(31) > 2^28. - Antti Karttunen, Nov 17 2019
a(n) <= 2^(n-1)*3^2, with equality for n = 3, 4, 5, 7, 13, 25, 31, 43,... . - Giovanni Resta, Nov 18 2019
EXAMPLE
The sequence of terms together with their prime signatures begins:
1: ()
2: (1)
36: (2,2)
72: (3,2)
144: (4,2)
180: (2,2,1)
576: (6,2)
420: (2,1,1,1)
360: (3,2,1)
864: (5,3)
1296: (4,4)
720: (4,2,1)
36864: (12,2)
1080: (3,3,1)
1440: (5,2,1)
1260: (2,2,1,1)
5184: (6,4)
1800: (3,2,2)
2160: (4,3,1)
3360: (5,1,1,1)
5760: (7,2,1)
15552: (6,5)
4620: (2,1,1,1,1)
2520: (3,2,1,1)
150994944: (24,2)
MATHEMATICA
dat=Table[DivisorSigma[0, n]-(PrimeOmega[n]-1)*PrimeNu[n], {n, 1000}];
Table[Position[dat, i][[1, 1]], {i, First[Split[Union[dat], #2==#1+1&]]}]
PROG
(PARI)
search_up_to = 2^28;
A307408(n) = 2+((bigomega(n)-1)*omega(n));
A328959(n) = (numdiv(n) - A307408(n));
A328963(search_up_to) = { my(m=Map(), t, lista=List([])); for(n=1, search_up_to, t =
A328959(n); if(!mapisdefined(m, t+2), mapput(m, t+2, n))); for(u=1, oo, if(!mapisdefined(m, u, &t), return(Vec(lista)), listput(lista, t))); };
v328963 = A328963(search_up_to);
A328963(n) = v328963[n]; \\ Antti Karttunen, Nov 17 2019
CROSSREFS
Positions of first appearances in A328959.
All terms are in A025487.
Sequence in context: A037418 A239343 A058517 * A081310 A187298 A069067
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 02 2019
EXTENSIONS
Definition corrected and terms a(25) - a(30) added by Antti Karttunen, Nov 17 2019
a(31)-a(42) from Giovanni Resta, Nov 18 2019
STATUS
approved