[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328183
Expansion of e.g.f. 1 / (2 - exp(4*x)).
7
1, 4, 48, 832, 19200, 553984, 19181568, 774848512, 35771842560, 1857882947584, 107214340620288, 6805814291464192, 471298297319915520, 35356865248765149184, 2856513752723261227008, 247264693517100223823872, 22830563015939200206766080, 2239752722978295095737974784
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} 4^k * binomial(n,k) * a(n-k).
a(n) = Sum_{k>=0} (4*k)^n / 2^(k + 1).
a(n) = 4^n * A000670(n).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*4^j, j=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Oct 06 2019
MATHEMATICA
nmax = 17; CoefficientList[Series[1/(2 - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[4^k Binomial[n, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
Table[2^(2 n - 1) HurwitzLerchPhi[1/2, -n, 0], {n, 0, 17}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 06 2019
STATUS
approved