[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A325648
Number of separable partitions of n in which the number of distinct (repeatable) parts is 4.
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 10, 19, 28, 48, 69, 102, 138, 190, 254, 331, 420, 534, 662, 818, 1003, 1192, 1438, 1700, 2011, 2334, 2746, 3127, 3625, 4132, 4728, 5311, 6066, 6737, 7624, 8446, 9476, 10437, 11648, 12731, 14133, 15421, 16991, 18461, 20286
OFFSET
1,11
COMMENTS
A partition is separable if there is an ordering of its parts in which no consecutive parts are identical. See A325646 for a guide to related sequences.
EXAMPLE
a(11) counts these 2 partitions: [4,1,3,2,1], [3,2,1,2,1,2].
MATHEMATICA
(separable=Table[Map[#[[1]]&, Select[Map[{#, Quotient[(1+Length[#]), Max[Map[Length, Split[#]]]]}&, IntegerPartitions[nn]], #[[2]]>1&]], {nn, 35}]);
Map[Length[Select[Map[{#, Length[Union[#]]}&, #], #[[2]]==4&]]&, separable]
(* Peter J. C. Moses, May 08 2019 *)
CROSSREFS
Sequence in context: A360811 A127297 A018739 * A325718 A011893 A132210
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 16 2019
STATUS
approved