[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A319670
a(n) = [x^n] Product_{k>=2} 1/(1 - x^k)^n.
3
1, 0, 2, 3, 14, 30, 119, 301, 1078, 3036, 10242, 30624, 100451, 310128, 1004817, 3158343, 10182982, 32345186, 104145896, 332953929, 1072383374, 3442913407, 11100120528, 35742258497, 115377720235, 372326184555, 1203406838428, 3890040945078, 12588182588373, 40748118469180
OFFSET
0,3
COMMENTS
Number of partitions of n into parts > 1, if there are n kinds of parts.
LINKS
FORMULA
a(n) = [x^n] exp(n*Sum_{k>=1} (sigma(k) - 1)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 3.293558598422332665054219310876308... and c = 0.2154241499279313950113565475... - Vaclav Kotesovec, Oct 06 2018
MATHEMATICA
Table[SeriesCoefficient[Product[1/(1 - x^k)^n , {k, 2, n}], {x, 0, n}], {n, 0, 29}]
Table[SeriesCoefficient[((1 - x)/QPochhammer[x])^n, {x, 0, n}], {n, 0, 29}]
Table[SeriesCoefficient[Exp[n Sum[(DivisorSigma[1, k] - 1) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 29}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 25 2018
STATUS
approved