[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A318658
Denominators of the sequence whose Dirichlet convolution with itself yields A087003, a(2n) = 0 and a(2n+1) = moebius(2n+1).
5
1, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 8, 1, 16, 1, 2, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 16, 1, 2, 1, 8, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 16, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 16, 1, 4, 1, 2, 1, 128, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 4, 1, 4, 1, 2, 1, 16, 1, 2, 1, 2, 1, 8
OFFSET
1,3
COMMENTS
The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".
LINKS
FORMULA
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A087003(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
a(n) = 2^A318659(n).
a(2n) = 1, a(2n-1) = A046644(2n-1) = A318512(2n-1), for all n >= 1.
PROG
(PARI)
up_to = 65537;
A087003(n) = ((n%2)*moebius(n)); \\ I.e. a(n) = A000035(n)*A008683(n).
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
v318657_18 = DirSqrt(vector(up_to, n, A087003(n)));
A318657(n) = numerator(v318657_18[n]);
A318658(n) = denominator(v318657_18[n]);
CROSSREFS
Cf. A005187, A087003, A318657 (numerators), A318659.
Sequence in context: A372835 A363520 A215136 * A318512 A295310 A359509
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Aug 31 2018
STATUS
approved