[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A318608
Moebius function mu(n) defined for the Gaussian integers.
10
1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0
OFFSET
1,1
COMMENTS
Just like the original Moebius function over the integers, a(n) = 0 if n has a squared Gaussian prime factor, otherwise (-1)^t if n is a product of a Gaussian unit and t distinct Gaussian prime factors.
a(n) = 0 for even n since 2 = -i*(1 + i)^2 contains a squared factor. For rational primes p == 1 (mod 4), p is always factored as (x + y*i)(x - y*i), x + y*i and x - y*i are not associated so a(p) = (-1)*(-1) = 1.
Interestingly, a(n) and A091069(n) have the same absolute value (= |A087003(n)|), since the discriminants of the quadratic fields Q[i] and Q[sqrt(2)] are -4 and 8 respectively, resulting in Q[i] and Q[sqrt(2)] being two of the three quadratic fields with discriminant a power of 2 or negated (the other one being Q[sqrt(-2)] with discriminant -8).
LINKS
FORMULA
a(n) = 0 if n even or has a square prime factor, otherwise Product_{p divides n} (2 - (p mod 4)) where the product is taken over the primes.
Multiplicative with a(p^e) = 0 if p = 2 or e > 1, a(p) = 1 if p == 1 (mod 4) and -1 if p == 3 (mod 4).
a(n) = 0 if A078458(n) != A086275(n), otherwise (-1)^A086275(n).
a(n) = A103226(n,0) = A103226(0,n).
For squarefree n, a(n) = Kronecker symbol (-4, n) = A101455(n). Also for these n, a(n) = A091069(n) if n even or n == 1 (mod 8), otherwise -A091069(n).
EXAMPLE
a(15) = -1 because 15 is factored as 3*(2 + i)*(2 - i) with three distinct Gaussian prime factors.
a(21) = (-1)*(-1) = 1 because 21 = 3*7 where 3 and 7 are congruent to 3 mod 4 (thus being Gaussian primes).
MATHEMATICA
f[p_, e_] := If[p == 2 || e > 1, 0, Switch[Mod[p, 4], 1, 1, 3, -1]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 10 2020 *)
PROG
(PARI)
a(n)=
{
my(r=1, f=factor(n));
for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
if(p==2||e>=2, r=0);
if(Mod(p, 4)==3&e==1, r*=-1);
);
return(r);
}
CROSSREFS
Absolute values are the same as those of A087003.
First row and column of A103226.
Cf. A101455.
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), this sequence ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319448.
Cf. A091069 (Moebius function over Z[sqrt(2)]).
Sequence in context: A374367 A099991 A091069 * A087003 A266840 A104606
KEYWORD
sign,easy,mult
AUTHOR
Jianing Song, Aug 30 2018
STATUS
approved