[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A317974
a(n) = 2*(a(n-1)+a(n-2)+a(n-3))-a(n-4) for n >= 4, with initial terms 0,0,1,1.
4
0, 0, 1, 1, 4, 12, 33, 97, 280, 808, 2337, 6753, 19516, 56404, 163009, 471105, 1361520, 3934864, 11371969, 32865601, 94983348, 274506972, 793339873, 2292794785, 6626299912, 19150362168, 55345573857, 159951677089, 462268926316, 1335981992356, 3861059617665
OFFSET
0,5
LINKS
H. S. M. Coxeter, Loxodromic sequences of tangent spheres, Aequationes Mathematicae, 1.1-2 (1968): 104-121. See p. 112.
Eric Weisstein's World of Mathematics, Coxeter's Loxodromic Sequence of Tangent Circles
FORMULA
Lim {n -> infinity} log(a(n))/n = 1.0612750619050... = log(phi+sqrt(phi)) = log(A001622+A139339), where phi is the golden ratio. - A.H.M. Smeets, Sep 04 2018
G.f.: x^2*(1 - x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 04 2018
MATHEMATICA
nxt[{a_, b_, c_, d_}]:={b, c, d, 2(b+c+d)-a}; NestList[nxt, {0, 0, 1, 1}, 30][[;; , 1]] (* or *) LinearRecurrence[{2, 2, 2, -1}, {0, 0, 1, 1}, 40] (* Harvey P. Dale, Dec 10 2024 *)
PROG
(Python)
a1, a2, a3, a4, n = 1, 1, 0, 0, 3
print(0, 0)
print(1, 0)
print(2, 1)
print(3, 1)
while n < 2172:
a1, a2, a3, a4, n = 2*(a1+a2+a3)-a4, a1, a2, a3, n+1
print(n, a1) # A.H.M. Smeets, Sep 04 2018
(PARI) concat(vector(2), Vec(x^2*(1 - x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + O(x^40))) \\ Colin Barker, Sep 04 2018
CROSSREFS
Sequence in context: A135254 A326804 A000754 * A119683 A331834 A135373
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, Sep 03 2018
STATUS
approved