[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316087
Expansion of 1/(1 + Sum_{k>=1} k^2 * x^k).
5
1, -1, -3, -2, 7, 19, 8, -53, -119, -18, 387, 727, -112, -2745, -4315, 2238, 18991, 24715, -24296, -128461, -135023, 219502, 850635, 688239, -1806560, -5515441, -3116403, 14022398, 34994967, 10783939, -104389592, -216919973, -5497639, 752295022, 1309660627
OFFSET
0,3
FORMULA
Convolution inverse of A253909.
G.f.: (x-1)^3/(x^3-4*x^2+2*x-1).
a(0) = 1; a(n) = -Sum_{k=1..n} k^2 * a(n-k). - Ilya Gutkovskiy, Feb 02 2021
PROG
(PARI) N=99; x='x+O('x^N); Vec(1/(1+sum(k=1, sqrtint(N), k^2*x^k)))
CROSSREFS
1/(1+ Sum_{k>=1} k^m * x^k): A163810 (m=1), this sequence (m=2), A316088 (m=3).
Sequence in context: A344211 A104528 A177115 * A196537 A173099 A111928
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 24 2018
STATUS
approved