[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to write n as x*(3*x-2) + y*(3*y-2) + 3^u + 3^v, where x,y,u,v are integers with x <= y and 0 <= u <= v.
25

%I #14 Apr 24 2018 05:52:00

%S 0,1,1,2,1,2,2,2,1,3,3,5,2,3,3,2,2,5,4,5,2,3,5,2,3,5,4,7,2,4,5,3,4,6,

%T 4,7,3,6,6,4,4,5,5,9,5,6,6,2,5,5,7,8,4,5,4,4,4,6,6,8,3,6,6,3,4,6,7,8,

%U 5,8,6,5,4,6,7,8,6,6,6,2

%N Number of ways to write n as x*(3*x-2) + y*(3*y-2) + 3^u + 3^v, where x,y,u,v are integers with x <= y and 0 <= u <= v.

%C Conjecture: a(n) > 0 for all n > 1. Moreover, any integer n > 1 can be written as x*(3*x+2) + y*(3*y+2) + 3^z + 3^w, where x is an integer and y,z,w are nonnegative integers.

%C a(n) > 0 for all n = 2..3*10^8. Those x*(3*x-2) with x integral are called generalized octagonal numbers (A001082). 76683391 is the least integer n > 1 not representable as the sum of two generalized octagonal numbers and two powers of 2.

%C See also A303389, A303401 and A303432 for similar conjectures.

%H Zhi-Wei Sun, <a href="/A303428/b303428.txt">Table of n, a(n) for n = 1..10000</a>

%H Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2015.10.014">A result similar to Lagrange's theorem</a>, J. Number Theory 162(2016), 190-211.

%H Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2016.11.008">Refining Lagrange's four-square theorem</a>, J. Number Theory 175(2017), 167-190.

%H Zhi-Wei Sun, <a href="http://maths.nju.edu.cn/~zwsun/179b.pdf">New conjectures on representations of integers (I)</a>, Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1701.05868">Restricted sums of four squares</a>, arXiv:1701.05868 [math.NT], 2017-2018.

%e a(2) = 1 with 2 = 0*(3*0-2) + 0*(3*0-2) + 3^0 + 3^0.

%e a(3) = 1 with 3 = 0*(3*0-2) + 1*(3*1-2) + 3^0 + 3^0.

%e a(4) = 2 with 4 = 1*(3*1-2) + 1*(3*1-2) + 3^0 + 3^0 = 0*(3*0-2) + 0*(3*0-2) + 3^0 + 3^1.

%e a(5) = 1 with 5 = 0*(3*0-2) + 1*(3*1-2) + 3^0 + 3^1.

%e a(9) = 1 with 9 = (-1)*(3*(-1)-2) + 0*(3*0-2) + 3^0 + 3^1.

%e a(4360) = 4 with 4360 = (-35)*(3*(-35)-2) + (-13)*(3*(-13)-2) + 3^0 + 3^4 = (-37)*(3*(-37)-2) + (-7)*(3*(-7)-2) + 3^2 + 3^2 = (-27)*(3*(-27)-2) + (-23)*(3*(-23)-2) + 3^5 + 3^5 = (-25)*(3*(-25)-2) + (-1)*(3*(-1)-2) + 3^5 + 3^7.

%t SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];

%t f[n_]:=f[n]=FactorInteger[n];

%t g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;

%t QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);

%t tab={};Do[r=0;Do[If[QQ[3(n-3^j-3^k)+2],Do[If[SQ[3(n-3^j-3^k-x(3x-2))+1],r=r+1],{x,-Floor[(Sqrt[3(n-3^j-3^k)/2+1]-1)/3],(Sqrt[3(n-3^j-3^k)/2+1]+1)/3}]],

%t {j,0,Log[3,n/2]},{k,j,Log[3,n-3^j]}];tab=Append[tab,r],{n,1,80}];Print[tab]

%Y Cf. A000244, A000567, A001082, A045944, A280472, A303233, A303338, A303363, A303389, A303393, A303399, A303401, A303432.

%K nonn

%O 1,4

%A _Zhi-Wei Sun_, Apr 23 2018