[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307576
Number of Motzkin excursions of length n with an even number of peaks.
0
1, 1, 1, 2, 5, 11, 26, 65, 164, 421, 1101, 2912, 7777, 20957, 56891, 155418, 426975, 1178841, 3269023, 9101182, 25428895, 71279177, 200391716, 564899237, 1596399798, 4521769035, 12835037619, 36504130056, 104012102095, 296872273835, 848694416554, 2429884047993
OFFSET
0,4
COMMENTS
A Motzkin excursion is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), never goes below the x-axis, and terminates at the altitude 0.
A peak is an occurrence of the pattern UD.
FORMULA
G.f.: (2*(1-t+t^2) - sqrt((1+t)*(1-3*t)) - sqrt((1-t)*(1-2*t)*(1+t+2*t^2))) / (4*t^2).
D-finite with recurrence 2*n*(n+2)*(6213*n-138098)*a(n) +(n-1)*(12426*n^2+978417*n+821680)*a(n-1) +2*(-23065*n^3-728759*n^2+2760574*n-410840)*a(n-2) +2*(-292946*n^3 +3649919*n^2 -11479673*n +8929300)*a(n-3) +2*(233455*n^3 -3707982*n^2 +13757984*n -13497400)*a(n-4) +(608874*n^3 -5758645*n^2 +11199163*n +5963900)*a(n-5) +2*(848625*n^3 -11463971*n^2 +51225442*n -77109420)*a(n-6) -16*(n-7)*(2213*n^2 +270746*n -1493325)*a(n-7) -24*(88769*n -321795)*(n-7)*(n-8)*a(n-8)=0. - R. J. Mathar, Jan 25 2023
a(n) + A307578(n) = A001006(n). - R. J. Mathar, Jan 25 2023
EXAMPLE
For n = 4 the a(4) = 5 paths are HHHH, HUHD, UHDH, UHHD, UDUD.
MAPLE
b:= proc(x, y, t, c) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1-c,
b(x-1, y-1, 0, irem(c+t, 2))+b(x-1, y, 0, c)+b(x-1, y+1, 1, c)))
end:
a:= n-> b(n, 0$3):
seq(a(n), n=0..35); # Alois P. Heinz, Apr 15 2019
MATHEMATICA
b[x_, y_, t_, c_] := b[x, y, t, c] = If[y > x || y < 0, 0, If[x == 0, 1-c, b[x-1, y-1, 0, Mod[c+t, 2]] + b[x-1, y, 0, c] + b[x-1, y+1, 1, c]]];
a[n_] := b[n, 0, 0, 0];
a /@ Range[0, 35] (* Jean-François Alcover, May 12 2020, after Maple *)
CROSSREFS
Cf. A001006.
Sequence in context: A235496 A025245 A300125 * A079223 A095892 A239311
KEYWORD
nonn
AUTHOR
Andrei Asinowski, Apr 15 2019
STATUS
approved