[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292435
Array T read by antidiagonals: T(m,n) = number of lattice walks of minimal length from (0,0) to (m,n) using steps in directions from {(1,0), (0,1), (3,0), (2,1), (1,2), (0,3)}.
1
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 4, 4, 4, 2, 3, 9, 12, 12, 9, 3, 1, 2, 3, 4, 3, 2, 1, 3, 9, 15, 21, 21, 15, 9, 3, 6, 24, 48, 72, 84, 72, 48, 24, 6, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 4, 16, 36, 64, 88, 96, 88, 64, 36, 16, 4, 10, 50, 130, 250, 380, 460, 460, 380, 250, 130, 50, 10, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1
OFFSET
0,5
LINKS
Jackson Evoniuk, Steven Klee, Van Magnan, Enumerating Minimal Length Lattice Paths, 2017, also Enumerating Minimal Length Lattice Paths, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.
FORMULA
G.f.: Sum(T(m,n)*x^m*y^n,m>=0,n>=0) = Sum(binomial(q+r,r)*(x^3+x^2*y+x*y^2+y^3)^q*(x+y)^r,q>=0,0<=r<=2).
EXAMPLE
Array T(m,n) begins
n\m 0 1 2 3 4 5 6 7 8 9 10
--------------------------------------------------------------------
[0] 1 1 1 1 2 3 1 3 6 1 4
[1] 1 2 1 4 9 2 9 24 3 16 50
[2] 1 1 4 12 3 15 48 6 36 130 10
[3] 1 4 12 4 21 72 10 64 250 20 150
[4] 2 9 3 21 84 12 88 380 31 255 1215
[5] 3 2 15 72 12 96 460 40 355 1830 101
[6] 1 9 48 10 88 460 44 420 2325 135 1416
[7] 3 24 6 64 380 40 420 2520 155 1740 11046
[8] 6 3 36 250 31 355 2325 155 1860 12600 546
[9] 1 16 130 20 255 1830 135 1740 12600 580 7882
[10] 4 50 10 150 1215 101 1416 11046 546 7882 63056
PROG
(Sage)
S = [[1, 0], [0, 1], [3, 0], [2, 1], [1, 2], [0, 3]]
q = 8 # q = range for m, n; change q for more data
numPathsMat = matrix(q+1, q+1, 0)
distMatrix = matrix(q+1, q+1, 0)
for m in [0..q]:
for n in [0..q]:
# first determine S-distance to (m, n)
d = minNeighborDist = max(distMatrix.list()) + 1
for s in S:
if m-s[0]>=0 and n-s[1]>=0:
d = distMatrix[m-s[0], n-s[1]]
if d < minNeighborDist:
minNeighborDist=d
distMatrix[m, n] = minNeighborDist+1
# next count number of minimal S-paths
count = 0
for s in S:
if m-s[0]>=0 and n-s[1]>=0:
if distMatrix[m-s[0], n-s[1]]==distMatrix[m, n]-1:
count += numPathsMat[m-s[0], n-s[1]]
numPathsMat[m, n] = count
numPathsMat[0, 0] = 1
print(numPathsMat)
CROSSREFS
Cf. A007318.
Sequence in context: A046214 A232088 A115413 * A319094 A069283 A319430
KEYWORD
nonn,tabl,walk
AUTHOR
Steven Klee, Dec 08 2017
STATUS
approved