[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A290497
Carmichael numbers with a record number of aliquot divisors that are also Carmichael numbers.
1
561, 63973, 31146661, 509033161, 84127131361, 11985185775745, 712484043821641, 24349841028259201, 53545320695780641, 141125066711098561, 16223841675726285601, 562477984940049379201
OFFSET
1,1
COMMENTS
The number of aliquot divisors is 0, 1, 2, 5, 7, 8, 10, 11, 17, 20, 26, 27, ...
The terms were calculated using Pinch's tables of Carmichael numbers (see link below).
EXAMPLE
509033161 is in the sequence since it is a Carmichael number, and 5 of its divisors are also Carmichael numbers (1729, 63973, 126217, 188461 and 294409), more than for any smaller Carmichael number.
MATHEMATICA
A002997 = Cases[Range[1, 100000, 2], n_ /; Mod[n, CarmichaelLambda[n]] == 1 && ! PrimeQ[n]]; carmichaelQ[n_] := Not[PrimeQ[n]] && Divisible[n - 1, CarmichaelLambda[n]]; numSol[n_] := Module[{m = 0}, ds = Divisors[n]; Do[d = ds[[k]]; If[! carmichaelQ[d], Continue[]]; m++, {k, 2, Length[ds] - 1}]; m]; numSolmax = -1; seq = {}; Do[n = A002997[[j]]; m = numSol[n]; If[m > numSolmax, AppendTo[seq, n]; numSolmax = m], {j, 1, Length[A002997]}]; seq
CROSSREFS
Cf. A002997.
Sequence in context: A258801 A329460 A097061 * A258839 A371759 A213867
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Aug 04 2017
EXTENSIONS
a(11) from Amiram Eldar, Jun 29 2019
a(12) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 24 2024
STATUS
approved