[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A294204
Number of partitions of n into distinct Lucas parts (A000032) greater than 1.
2
1, 0, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 1, 2, 1, 3, 0, 3, 2, 2, 2, 2, 3, 0, 3, 1, 3, 1, 3, 3, 2, 3, 2, 4, 0, 4, 2, 3, 2, 3, 3, 1, 3, 1, 4, 0, 4, 3, 3, 3, 3, 5, 0, 5, 2, 4, 2, 4, 4, 2, 4, 2, 5, 0, 5, 3, 3, 3, 3, 4, 0, 4, 1, 4, 1, 4, 4, 3, 4, 3, 6, 0, 6, 3, 5, 3, 5, 5, 2, 5, 2, 6, 0, 6, 4, 4, 4, 4
OFFSET
0,8
COMMENTS
Convolution of the sequences A067595 and A033999.
FORMULA
G.f.: (1 + x^2)*Product_{k>=2} (1 + x^Lucas(k)).
EXAMPLE
a(9) = 2 because we have [7, 2] and [4, 3, 2].
MATHEMATICA
CoefficientList[Series[(1 + x^2) Product[1 + x^LucasL[k], {k, 2, 15}], {x, 0, 100}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 24 2017
STATUS
approved