[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A273225
Number of bipartitions of n wherein odd parts are distinct (and even parts are unrestricted).
5
1, 2, 3, 6, 11, 18, 28, 44, 69, 104, 152, 222, 323, 460, 645, 902, 1254, 1722, 2343, 3174, 4278, 5722, 7601, 10056, 13250, 17358, 22623, 29382, 38021, 48984, 62857, 80404, 102528, 130282, 165002, 208398, 262495, 329666, 412878, 515840
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of bipartitions of 'n' wherein odd parts are distinct (and even parts are unrestricted).
G.f. is the square of the g.f. of A006950. - Vaclav Kotesovec, Mar 25 2017
LINKS
M. D. Hirschhorn and J. A. Sellers, Arithmetic properties of partitions with odd parts distinct, Ramanujan J. 22 (2010), 273--284.
L. Wang, Arithmetic properties of partition triples with odd parts distinct, Int. J. Number Theory, 11 (2015), 1791--1805.
L. Wang, Arithmetic properties of partition quadruples with odd parts distinct, Bull. Aust. Math. Soc., doi:10.1017/S0004972715000647.
L. Wang, New congruences for partitions where the odd parts are distinct, J. Integer Seq. (2015), article 15.4.2.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^2 / (1 - x^(4*k))^2, corrected by Vaclav Kotesovec, Mar 25 2017
Expansion of 1 / psi(-x)^2 in powers of x where psi() is a Ramanujan theta function.
a(n) ~ exp(Pi*sqrt(n))/(2^(5/2)*n^(5/4)). - Vaclav Kotesovec, Jul 05 2016
Euler transform of period 4 sequence [2, 0, 2, 2, ...]. - Michael Somos, Mar 02 2019
EXAMPLE
a(4)=11 because "(0,4)=(0,3+1)=(0,2+2)=(1,3)=(1,2+1)=(2,2)=(4,0)=(3+1,0)=(2+2,0)=(3,1)=(2+1,1)".
G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 11*x^4 + 18*x^5 + 28*x^6 + 44*x^7 + ... - Michael Somos, Mar 02 2019
G.f. = q^-1 + 2*q^3 + 3*q^7 + 6*q^11 + 11*q^15 + 18*q^19 + 28*q^23 + ... - Michael Somos, Mar 02 2019
MAPLE
Digits:=200:with(PolynomialTools): with(qseries): with(ListTools):
GenFun:=series(etaq(q, 2, 100)^2/etaq(q, 1, 100)^2/etaq(q, 4, 100)^2, q, 50):
CoefficientList(sort(convert(GenFun, polynom), q, ascending), q);
MATHEMATICA
s = QPochhammer[-1, x]^2/(4*QPochhammer[x^4, x^4]^2) + O[x]^40; CoefficientList[s, x] (* Jean-François Alcover, May 20 2016 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2, x^4] / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, Mar 02 2019 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0 , A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A))^2, n))}; /* Michael Somos, Mar 02 2019 */
CROSSREFS
For a version with signs see A274621.
Cf. A006950.
Sequence in context: A131512 A147388 A180712 * A274621 A291725 A003479
KEYWORD
nonn
AUTHOR
M.S. Mahadeva Naika, May 18 2016
STATUS
approved