[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that (11*10^k + 19)/3 is prime.
502

%I #15 Jul 25 2024 14:26:35

%S 1,2,3,9,17,18,20,24,29,36,48,114,126,135,153,170,241,363,483,579,681,

%T 948,2483,2798,3081,5137,5640,6890,7080,12600,16929,24253,24793,35546,

%U 52956,69645,133831,206688

%N Numbers k such that (11*10^k + 19)/3 is prime.

%C For k > 1, numbers k such that the digit 3 followed by k-2 occurrences of the digit 6 followed by the digits 73 is prime (see Example section).

%C a(39) > 3*10^5.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 36w73</a>.

%e 3 is in this sequence because (11*10^3 + 19)/3 = 3673 is prime.

%e Initial terms and associated primes:

%e a(1) = 1, 43;

%e a(2) = 2, 373;

%e a(3) = 3, 3673;

%e a(4) = 9, 3666666673;

%e a(5) = 17, 366666666666666673, etc.

%t Select[Range[0, 100000], PrimeQ[(11*10^# + 19)/3] &]

%o (PARI) is(n)=isprime((11*10^n + 19)/3) \\ _Charles R Greathouse IV_, Mar 16 2016

%Y Cf. A056654, A268448, A269303.

%K nonn,more

%O 1,2

%A _Robert Price_, Mar 15 2016

%E a(37) from _Robert Price_, Sep 16 2018

%E a(38) from _Robert Price_, Jul 25 2024