[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278045
Number of trailing 0's in tribonacci representation of n (cf. A278038).
8
1, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 2, 0, 4, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 2, 0, 4, 0, 1, 0, 2, 0, 1, 6, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 2, 0, 4, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 2, 0, 7, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 2, 0, 4, 0, 1, 0, 2, 0
OFFSET
0,5
COMMENTS
The number mod 3 of trailing 0's in the tribonacci representation of n >= 1 (this sequence mod 3) is the tribonacci word itself (A080843). - N. J. A. Sloane, Oct 04 2018
The number of trailing 1's in the tribonacci representation of n >= 0 (cf. A278038) is also the tribonacci word itself (A080843).
From Amiram Eldar, Mar 04 2022: (Start)
The asymptotic density of the occurrences of k = 0, 1, 2, ... is (c-1)/c^(k+1), where c = 1.839286... (A058265) is the tribonacci constant.
The asymptotic mean of this sequence is 1/(c-1) = 1.191487... (End)
LINKS
MATHEMATICA
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; a[0] = 1; a[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Min[s] - 1]; Array[a, 100, 0] (* Amiram Eldar, Mar 04 2022 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 18 2016
STATUS
approved