[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First differences of A003144.
8

%I #46 Mar 07 2020 13:50:20

%S 2,2,2,1,2,2,2,2,2,2,1,2,2,2,2,2,1,2,2,2,2,2,2,1,2,2,2,1,2,2,2,2,2,2,

%T 1,2,2,2,2,2,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1,2,2,2,2,2,1,2,2,2,2,2,2,1,

%U 2,2,2,1,2,2,2,2,2,2,1,2,2,2,2,2,1,2,2,2,2,2,2,1,2,2,2,2,2,1,2,2

%N First differences of A003144.

%C In A276790, leave 2's unchanged, but replace 1's by 2's and 0's by 1's, and then omit the initial 1.

%C If we prefixed A003144 with an initial 0, then its first differences would be a' := 1 followed by a, that is, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, ... If we now add 1 to every term of a' we get A305374 = first differences of A140101. - _N. J. A. Sloane_, Jul 17 2018

%C This relation between A003144 and A140101 is a conjecture - _Michel Dekking_, Mar 18 2019 [It has been a theorem since Mar 22 2019. - _N. J. A. Sloane_, Jun 25 2019. (See the Dekking et al. paper)]

%C (a(n)) is a morphic sequence: in the tribonacci word A092782 = 1,2,1,3,1,2,1,1,... map 1 -> 2, 2 -> 2, 3 -> 1. - _Michel Dekking_, Mar 21 2019

%H Robert Israel, <a href="/A276788/b276788.txt">Table of n, a(n) for n = 1..10608</a>

%H Elena Barcucci, Luc Belanger and Srecko Brlek, <a href="http://www.fq.math.ca/Papers1/42-4/quartbarcucci04_2004.pdf">On tribonacci sequences</a>, Fib. Q., 42 (2004), 314-320. See page 316.

%H F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: non-attacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52.

%F a(n) = A003144(n+1) - A003144(n), n >= 1.

%F a(n+1) = 2 - t(n)*(t(n) - 1)/2 = 2 - A276791(n+1), for n >= 0, where t(n) = A080843(n). See the W. Lang link in A080843, eq. (38). - _Wolfdieter Lang_, Dec 06 2018

%p M:= 10: # to use M generations of strings

%p S[1]:="a": S[2]:="ab": S[3]:="abac":

%p for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:

%p P:=select(t -> S[M][t]="a", [$1..length(S[M])]):

%p P[2..-1]-P[1..-2]; # _Robert Israel_, Nov 01 2016

%Y Cf. A003144, A003145, A003146, A080843, A276790, A276791, A275925, A305374, A140101.

%Y See A278039 for partial sums.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_, Oct 14 2016