[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262054
Euler pseudoprimes to base 7: composite integers such that abs(7^((n - 1)/2)) == 1 mod n.
6
25, 325, 703, 817, 1825, 2101, 2353, 2465, 3277, 4525, 6697, 8321, 10225, 11041, 11521, 12025, 13665, 14089, 19345, 20197, 20417, 20425, 25829, 29857, 29891, 35425, 38081, 39331, 46657, 49241, 49321, 50881, 58825, 64681, 75241, 75361, 76627, 78937, 79381
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..61 from Daniel Lignon)
MATHEMATICA
eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[25000] + 1, eulerPseudoQ[#, 7] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
PROG
(PARI) for(n=1, 1e5, if( Mod(7, (2*n+1))^n == 1 || Mod(7, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015
CROSSREFS
Cf. A006970 (base 2), A262051 (base 3), A262052 (base 5), A262053 (base 6), this sequence (base 7), A262055 (base 8).
Sequence in context: A162367 A263404 A077503 * A020275 A020233 A020319
KEYWORD
nonn
AUTHOR
Daniel Lignon, Sep 09 2015
STATUS
approved