[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249074
Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
2
1, 4, 1, 6, 4, 1, 32, 14, 4, 1, 60, 72, 24, 4, 1, 384, 228, 120, 36, 4, 1, 840, 1392, 564, 176, 50, 4, 1, 6144, 4488, 3312, 1140, 240, 66, 4, 1, 15120, 31200, 14640, 6480, 2040, 312, 84, 4, 1, 122880, 104880, 97440, 37440, 11280, 3360, 392, 104, 4, 1, 332640
OFFSET
0,2
COMMENTS
The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + 2n/f(n-1,x), where f(0,n) = 1. (Sum of numbers in row n) = A249074(n) for n >= 0. (n-th term of column 1) = A087299(n) for n >= 1.
LINKS
Clark Kimberling, Rows 0..100, flattened
EXAMPLE
f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = (4 + x)/1, so that p(1,x) = 4 + x;
f(2,x) = (6 + 4 x + x^2)/(3 + x), so that p(2,x) = 6 + 4 x + x^2).
First 6 rows of the triangle of coefficients:
1
4 1
6 4 1
32 14 4 1
60 72 24 4 1
384 228 120 36 4 1
MATHEMATICA
z = 11; p[x_, n_] := x + 2 n/p[x, n - 1]; p[x_, 1] = 1;
t = Table[Factor[p[x, n]], {n, 1, z}]
u = Numerator[t]
TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249074 array *)
Flatten[CoefficientList[u, x]] (* A249074 sequence *)
v = u /. x -> 1 (* A249075 *)
u /. x -> 0 (* A087299 *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Oct 20 2014
STATUS
approved