[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A238094
Triangle read by rows: T(n,k) (n >= 1, k >= 0) = number of Dyck paths of semilength k avoiding the pattern U^n D^n.
0
0, 1, 1, 1, 1, 1, 2, 4, 4, 1, 1, 2, 5, 13, 25, 25, 1, 1, 2, 5, 14, 41, 106, 196, 196, 1, 1, 2, 5, 14, 42, 131, 392, 980, 1764, 1764, 1, 1, 2, 5, 14, 42, 132, 428, 1380, 4068, 9864, 17424, 17424, 1, 1, 2, 5, 14, 42, 132, 429, 1429, 4797, 15489, 44649, 105633, 184041, 184041, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16714, 56749, 181258, 511225
OFFSET
1,7
COMMENTS
Row n has length 2n-1.
LINKS
Axel Bacher, Antonio Bernini, Luca Ferrari, Benjamin Gunby, Renzo Pinzani, Julian West, The Dyck pattern poset, Discrete Math. 321 (2014), 12--23. MR3154009.
EXAMPLE
Triangle begins:
0,
1, 1, 1,
1, 1, 2, 4, 4,
1, 1, 2, 5, 13, 25, 25,
1, 1, 2, 5, 14, 41, 106, 196, 196,
1, 1, 2, 5, 14, 42, 131, 392, 980, 1764, 1764,
1, 1, 2, 5, 14, 42, 132, 428, 1380, 4068, 9864, 17424, 17424,
1, 1, 2, 5, 14, 42, 132, 429, 1429, 4797, 15489, 44649, 105633, 184041, 184041,
...
CROSSREFS
Rows converge to A000108. Right-hand edge is A001246.
Sequence in context: A358641 A057277 A258712 * A140734 A295633 A159778
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Feb 21 2014
STATUS
approved