[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A222292
Least number whose Collatz 3x+1 trajectory contains a number >= 2^n.
3
1, 2, 3, 3, 3, 7, 15, 15, 27, 27, 27, 27, 27, 27, 447, 447, 703, 703, 1819, 1819, 1819, 4255, 4255, 9663, 9663, 20895, 26623, 60975, 60975, 60975, 77671, 113383, 159487, 159487, 159487, 665215, 1042431, 1212415, 2684647, 3041127, 4637979, 5656191, 6416623
OFFSET
0,2
COMMENTS
Are the unique values a subset of A006884? - Ralf Stephan, May 27 2013
This sequence is important for the computation of Collatz numbers. It shows that using 32-bit integers, only numbers less than 159487 can have their Collatz trajectory computed.
MAPLE
b:= proc(n) option remember; `if`(n=1, 1,
max(n, b(`if`(n::even, n/2, 3*n+1))))
end:
a:= proc(n) option remember; local i, t; t:=2^n;
for i while b(i)<t do od: i
end:
seq(a(n), n=0..38); # Alois P. Heinz, Sep 25 2024
CROSSREFS
Cf. A025586, A222291 (base-10 version).
Cf. A095384.
Sequence in context: A275379 A109833 A132005 * A088041 A334579 A199457
KEYWORD
nonn,base
AUTHOR
T. D. Noe, Feb 19 2013
EXTENSIONS
a(1) corrected by Kevin Ge, Sep 25 2024
STATUS
approved