[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A224143
Number of n X 5 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1
16, 86, 275, 691, 1509, 2985, 5471, 9431, 15457, 24285, 36811, 54107, 77437, 108273, 148311, 199487, 263993, 344293, 443139, 563587, 709013, 883129, 1089999, 1334055, 1620113, 1953389, 2339515, 2784555, 3295021, 3877889, 4540615, 5291151, 6137961
OFFSET
1,1
COMMENTS
Column 5 of A224146.
LINKS
FORMULA
Empirical: a(n) = (2/15)*n^5 + (2/3)*n^4 + (10/3)*n^3 + (25/3)*n^2 + (203/15)*n - 17 for n>2.
Conjectures from Colin Barker, Aug 27 2018: (Start)
G.f.: x*(16 - 10*x - x^2 + 11*x^3 + 8*x^4 - 10*x^5 + x^6 + x^7) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>8.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..1..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..1
..0..1..1..0..0....0..0..1..0..0....0..0..1..0..0....1..1..1..1..1
..1..1..1..1..1....0..1..1..1..0....0..1..1..0..0....1..1..1..1..1
CROSSREFS
Cf. A224146.
Sequence in context: A183777 A050256 A223835 * A225007 A352953 A070052
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 31 2013
STATUS
approved