[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A214304
Expansion of phi(q) + phi(q^2) - phi(q^4) in powers of q where phi() is a Ramanujan theta function.
1
1, 2, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of psi(-x^2) * phi(x^4)^2 / f(-x, x^3)^2 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 16 sequence [ 2, -1, -2, 2, -2, 1, 2, -3, 2, 1, -2, 2, -2, -1, 2, -1, ...].
a(n) = 2 * b(n) where b(n) is multiplicative with b(2^e) = (1 - (-1)^e)/2, b(p^e) = (1 + (-1)^e)/2 if p>2.
G.f.: Sum_{k} x^k^2 + x^(2*k^2) - x^(4*k^2).
a(4*n + 3) = a(6*n + 4) = a(6*n + 5) = a(8*n + 4) = a(8*n + 5) = a(8*n + 6) = 0. a(2*n) = A000122(n). a(6*n + 2) = 2 * A089801(n). a(8*n + 1) = 2 * A010054(n).
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = sqrt(2) + 1 = 2.414213... (A014176). - Amiram Eldar, Dec 30 2023
EXAMPLE
1 + 2*q + 2*q^2 + 2*q^8 + 2*q^9 + 2*q^18 + 2*q^25 + 2*q^32 + 2*q^49 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2] - EllipticTheta[ 3, 0, q^4], {q, 0, n}]
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, I q] / (2 (I q)^(1/4)) EllipticTheta[ 3, 0, q^4]^2 / (QPochhammer[ -q^4] QPochhammer[ q, -q^4] QPochhammer[ -q^3, -q^4])^2, {q, 0, n}]
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * issquare( n * 2^(n%2==0)))}
(PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k=1, matsize(A)[1], if( p = A[k, 1], e = A[k, 2]; if( p==2, (1 - (-1)^e)/2, (1 + (-1)^e)/2))))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jul 12 2012
STATUS
approved