[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202437
G.f.: A(x) = ( Sum_{n>=0} 9^n*(2*n+1) * (-x)^(n*(n+1)/2) )^(-1/9).
2
1, 3, 45, 900, 19305, 437076, 10254681, 246553875, 6035226975, 149777902710, 3757716928053, 95110270281675, 2424907723685985, 62204709603345075, 1604054030028748830, 41549974064592136020, 1080505644116115671622, 28195636842752845510215, 738014045325584817820275
OFFSET
0,2
COMMENTS
Compare to the q-series identity:
1/P(x)^3 = Sum_{n>=0} (-1)^n*(2*n+1) * x^(n*(n+1)/2),
where P(x) is the partition function (g.f. of A000041).
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
FORMULA
a(5*n+2) == a(5*n+3) == a(5*n+4) == 0 (mod 5).
Self-convolution cube yields A202438.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 45*x^2 + 900*x^3 + 19305*x^4 + 437076*x^5 +...
where
1/A(x)^9 = 1 - 27*x - 405*x^3 + 5103*x^6 + 59049*x^10 - 649539*x^15 - 6908733*x^21 +...+ 9^n*(2*n+1)*(-x)^(n*(n+1)/2) +...
Note that the residues a(n) (mod 5) begin:
[1,3,0,0,0,1,1,0,0,0,3,0,0,0,0,0,2,0,0,0,2,2,0,0,0,1,3,0,0,0,3,3,0,0,0,4,4...].
MATHEMATICA
nmax = 19;
Sum[9^n (2n+1)(-x)^(n(n+1)/2), {n, 0, nmax}]^(-1/9) + O[x]^nmax // CoefficientList[#, x]& (* Jean-François Alcover, Sep 09 2018 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, sqrtint(2*n+1), 9^m*(2*m+1)*(-x)^(m*(m+1)/2)+x*O(x^n))^(-1/9), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2011
STATUS
approved