[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190083
n + [n*r/s] + [n*t/s]; r=1, s=sin(2*Pi/5), t=csc(2*Pi/5).
5
3, 6, 9, 12, 15, 18, 21, 24, 27, 31, 34, 37, 40, 43, 46, 49, 52, 55, 59, 63, 66, 69, 72, 75, 78, 81, 84, 87, 91, 94, 97, 100, 103, 106, 109, 112, 115, 119, 123, 126, 129, 132, 135, 138, 141, 144, 147, 151, 154, 157, 160, 163, 166, 169, 172, 175, 179, 182, 186, 189, 192, 195, 198, 201, 204, 207, 211, 214, 217, 220, 223, 226, 229, 232, 235
OFFSET
1,1
COMMENTS
See A190082.
LINKS
FORMULA
(See A190082.)
MATHEMATICA
r=1; s=Sin[2*Pi/5]; t=Csc[2*Pi/5];
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[a[n], {n, 1, 120}] (* A190082 *)
Table[b[n], {n, 1, 120}] (* A190083 *)
Table[c[n], {n, 1, 120}] (* A190084 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/sin(2*Pi/5)) + floor(n/(sin(2*Pi/5))^2), ", ")) \\ G. C. Greubel, Nov 07 2018
(Magma) R:= RealField(); [n + Floor(n/Sin(2*Pi(R)/5)) + Floor(n/(Sin(2*Pi(R)/5))^2): n in [1..100]]; // G. C. Greubel, Nov 07 2018
CROSSREFS
Sequence in context: A059563 A292641 A085126 * A117124 A323422 A071073
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 04 2011
STATUS
approved