[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187770
Decimal expansion of Otter's asymptotic constant beta for the number of rooted trees.
30
4, 3, 9, 9, 2, 4, 0, 1, 2, 5, 7, 1, 0, 2, 5, 3, 0, 4, 0, 4, 0, 9, 0, 3, 3, 9, 1, 4, 3, 4, 5, 4, 4, 7, 6, 4, 7, 9, 8, 0, 8, 5, 4, 0, 7, 9, 4, 0, 1, 1, 9, 8, 5, 7, 6, 5, 3, 4, 9, 3, 5, 4, 5, 0, 2, 2, 6, 3, 5, 4, 0, 0, 4, 2, 0, 4, 7, 6, 4, 6, 0, 5, 3, 7, 9, 8, 6
OFFSET
0,1
COMMENTS
A000081(n) ~ 0.439924012571 * alpha^n * n^(-3/2), alpha = 2.95576528565199497... (see A051491)
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p.296
D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, p. 396.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1799, (this constant was computed by David Broadhurst in November 1999)
Amirmohammad Farzaneh, Mihai-Alin Badiu, and Justin P. Coon, On Random Tree Structures, Their Entropy, and Compression, arXiv:2309.09779 [cs.IT], 2023.
Eric Weisstein's World of Mathematics, Rooted Tree
EXAMPLE
0.43992401257102530404090339143454476479808540794...
MATHEMATICA
digits = 87; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^(-k)]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1 + Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; RealDigits[b, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Jan 04 2013
STATUS
approved