[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A178998
Primes of the form 4^k mod 3^k.
0
7, 13, 119923, 146050183, 4039362385345521139, 289247481259011497824466400997481269, 1765256712749403700417549596608786383, 395766070055468241613007225643003404495980782673, 2596786183076854435238229837938226284218037897451862682304077097493117
OFFSET
1,1
FORMULA
{ A000040 } intersect { A064629 }.
MAPLE
select(isprime, [4&^n mod 3^n$n=1..200])[]; # Alois P. Heinz, May 18 2019
MATHEMATICA
Select[Table[PowerMod[4, n, 3^n], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 03 2011 *)
PROG
(PARI) terms(n) = my(i=0); for(k=0, oo, if(i>=n, break); my(x=lift(Mod(4, 3^k)^k)); if(ispseudoprime(x), print1(x, ", "); i++))
/* Print initial 7 terms as follows: */
terms(7) \\ Felix Fröhlich, May 18 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved